Citation: | GUO Zhanfeng, SHU Yi, CHEN Miankun, LIU Haotian, PENG Wei, XIAO Xiong. Characteristics of the shale sedimentary environment and organic matter enrichment mechanism in the Jurassic Lianggaoshan Formation in the East Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 62-74. doi: 10.19509/j.cnki.dzkq.tb20230727 |
The good oil test results of Taiye 1 and Xingye L1 wells in the Jurassic Lianggaoshan Formation shale indicate the breakthrough of shale oil/gas exploration in the Jurassic continental shale in the Fuxing area of the eastern Sichuan Basin. To further clarify the oil/gas exploration potential and the organic matter enrichment mechanism of the Jurassic Lianggaoshan Formation shale, utilizing logging and core data of two typical wells Xingye X and Xingye Y, the whole-rock X-ray diffraction, organic carbon, major and trace elements were analyzed.
The Liang-2 lower submember was deposited in the environment of warm-wet (moderate weathering conditions) and freshwater, and there was no obvious difference in palaeoclimates of different unit formations. The La-Co data suggests a semi-deep to deep lake environment with a palaeowater depth ranging from 10.9 to 56.1 m; the anoxic reducing environment persisted on the lake floor despite the lake level fluctuation, but the palaeoproductivity was vertically increased. The shale interval is rich in sandy laminae, but the deposition rate of the shale layer is lower than that of the sandstone layer.
According to the correlation analysis between sedimentary environment parameters and organic carbon content (TOC), the organic matter enrichment in the Liang-2 lower submember shale was mainly controlled by factors of palaeowater depth, palaeoredox environment, deposition rate, and palaeoproductivity, and slightly affected by the palaeosalinity and palaeoclimate conditions. The variation in the deposition environment resulted in the vertical heterogeneity of shale.
The shale facies of Unit 6, formed in the good conditions for the organic matter enrichment referring to an anoxic environment in deep water, with a low deposition rate, a high palaeoproductivity, and the slight influence of terrigenous sources, was a favorable target layer for exploration.
[1] |
金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm
JIN Z J, WANG G P, LIU G X, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm
|
[2] |
杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5): 553-559. doi: 10.3969/j.issn.1672-7703.2019.05.002
YANG L, JIN Z J. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553-559. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7703.2019.05.002
|
[3] |
U.S. Energy Information Administration. Drilling productivity report: For key tight oil and shale gas regions[R]. Washington, D C: EIA Independent Statistics & Analysis, 2020.
|
[4] |
EIA. Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formation in 41 countries outside the United States[R]. Washington, D C: U.S. Energy Information Administration, 2013.
|
[5] |
黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm
LI M W, JIN Z J, DONG M Z, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2019, 42(4): 489-505. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm
|
[6] |
刘惠民, 于炳松, 谢忠怀, 等. 陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义: 以渤海湾盆地济阳坳陷为例[J]. 石油学报, 2018, 39(12): 1328-1343. doi: 10.7623/syxb201812002
LIU H M, YU B S, XIE Z H, et al. Characteristics and implications of micro-lithofacies in lacustrine-basin organic-rich shale: A case study of Jiyang Depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(12): 1328-1343. (in Chinese with English abstract) doi: 10.7623/syxb201812002
|
[7] |
付金华, 刘显阳, 李士祥, 等. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力[J]. 中国石油勘探, 2021, 26(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105001.htm
FU J H, LIU X Y, LI S X, et al. Discovery and resource potential of shale oil of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2021, 26(5): 1-11. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105001.htm
|
[8] |
何文渊, 蒙启安, 冯子辉, 等. 松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J]. 石油学报, 2022, 43(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201001.htm
HE W Y, MENG Q A, FENG Z H, et al. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2022, 43(1): 1-14. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201001.htm
|
[9] |
林晓慧, 詹兆文, 邹艳荣, 等. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义[J]. 地球化学, 2019, 48(1): 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201901006.htm
LIN X H, ZHAN Z W, ZOU Y R, et al. Element geochemical characteristics and sedimentary environment significance of Lusaogou Formation oil shale, southeast margin of Junggar Basin[J]. Geochimica, 2019, 48(1): 67-78. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201901006.htm
|
[10] |
金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
JIN Z J, BAI Z R, GAO B, et al. Is the shale revolution coming to China?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
|
[11] |
ZOU C N, PAN S Q, HAO Q. On the connotation, challenge and significance of China's "energy independence" strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 449-462. doi: 10.1016/S1876-3804(20)60062-3
|
[12] |
赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm
ZHAO W Z, HU S Y, HOU L H, et al. Types, resource potential and boundary between continental shale oil and tight oil in China[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm
|
[13] |
万晓樵, 吴怀春, 席党鹏, 等. 中国东北地区白垩纪温室时期陆相生物群与气候环境演化[J]. 地学前缘, 2017, 24(1): 18-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201701003.htm
WAN X Q, WU H C, XI D P, et al. Terrestrial biota and climatic environment evolution during the Cretaceous Greenhouse Period in Northeast China[J]. Earth Science Frontiers, 2017, 24(1): 18-31. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201701003.htm
|
[14] |
王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017, 35(6): 1265-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706017.htm
WANG F, LIU X C, DENG X Q, et al. Geochemical characteristics of trace elements in Zhifang Formation of Ordos Basin and its implications for sedimentary environment[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1265-1273. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706017.htm
|
[15] |
LIANG C, CAO Y C, JIANG Z X, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: Implications for geochemistry and reservoir characteristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858.
|
[16] |
WANG Y X, XU S, HAO F, et al. Geochemical and petrographic characteristics of Wufeng implications for geochemistry and reservoir characteristics[J]. Marine and Petroleum Geology, 2017, 101(11): 1835-1858.
|
[17] |
LIANG C, JIANG Z X, CAO Y C, et al. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression[J]. GSA Bulletin, 2018, 130(1/2): 154-174.
|
[18] |
ZHANG T S, HU S Y, BU Q Y, et al. Effects of lacustrine depositional sequences on organic matter enrichment in the Chang 7 Shale, Ordos Basin, China[J]. Marine and Petroleum Geology, 2021, 124: 104778.
|
[19] |
郑一丁, 雷裕红, 张立强, 等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学, 2015, 26(7): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507023.htm
ZHENG Y D, LEI Y H, ZHANG L Q, et al. Element geochemistry, paleosedimentary environment evolution characteristics and petroleum geological significance of Zhangjiatan Shale, southeast Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1395-1404. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507023.htm
|
[20] |
何文渊, 蒙启安, 付秀丽, 等. 松辽盆地古龙凹陷青山口组页岩沉积环境特征及其有机质富集机理[J/OL]. 沉积学报, 2022,
HE W Y, MENG Q A, FU X L, et al. Sedimentary environment characteristics and organic matter enrichment mechanism of Qingshankou Formation shale in Gulong Sag, Songliao Basin[J/OL]. Acta Sedimentologica Sinica, 2022,
|
[21] |
罗锦昌, 田继军, 马静辉, 等. 吉木萨尔凹陷吉页1井区二叠系芦草沟组沉积环境及有机质富集机理[J]. 岩性油气藏, 2022, 34(5): 73-85. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202205006.htm
LUO J C, TIAN J J, MA J H, et al. Sedimentary environment and organic matter enrichment mechanism of Permian Lucaogou Formation in Jiye-1 well area, Jimsar Sag[J]. Lithologic Reservoirs, 2002, 34(5): 73-85. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202205006.htm
|
[22] |
LEI W Z, CHEN D X, LIU Z Y, et al. Paleoenvironment-driven organic matter accumulation in lacustrine shale mixed with shell bioclasts: A case study from the Jurassic Da'anzhai member, Sichuan Basin (China)[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111178.
|
[23] |
XIAO Z L, CHEN S J, ZHANG S M, et al. Sedimentary environment and model for lacustrine organic matter enrichment: Lacustrine shale of the Early Jurassic Da'anzhai Formation, central Sichuan Basin, China[J]. Journal of Palaeogeography, 2021, 10(4): 584-601.
|
[24] |
付小平, 杨滔. 川东北地区下侏罗统自流井组陆相页岩储层孔隙结构特征[J]. 石油实验地质, 2021, 43(4): 589-598. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104005.htm
FU X P, YANG T. Pore structure characteristics of Lower Jurassic Ziliujing Formation continental shale reservoir in northeast Sichuan[J]. Experimental Petroleum Geology, 2021, 43(4): 589-598. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104005.htm
|
[25] |
曹香妮, 姜振学, 朱德宇, 等. 川东北地区自流井组陆相页岩岩相类型及储层发育特征[J]. 天然气地球科学, 2019, 30(12): 1782-1793. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912012.htm
CAO X N, JIANG Z X, ZHU D Y, et al. Lithofacies types and reservoir development characteristics of continental shale in Ziliujing Formation, northeast Sichuan[J]. Natural Gas Geoscience, 2019, 30(12): 1782-1793. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912012.htm
|
[26] |
张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J]. 地学前缘, 2005, 12(3): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503006.htm
ZHANG S C, ZHANG B M, BIAN L Z, et al. Factors controlling the development of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503006.htm
|
[27] |
陈代钊, 汪建国, 严德天, 等. 扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[J]. 地质科学, 2011, 46(1): 5-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101004.htm
CHEN D Z, WANG J G, YAN D T, et al. Environmental dynamic mechanism and difference of organic matter accumulation in major source rocks of Paleozoic in Yangtze region[J]. Chinese Journal of Geology, 2011, 46(1): 5-26. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101004.htm
|
[28] |
NESBITT H W, YOUNG G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5): 525-542.
|
[29] |
MCLENNAN S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
|
[30] |
BAI Y Y, LIU Z J, SUN P C, et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale-and coal-bearing layers of the Meihe Basin, Northeast China[J]. Journal of Asian Earth Sciences, 2015, 97: 89-101.
|
[31] |
KATZ B J. Factors controlling the development of lacustrine petroleum source rocks: An update[C]//HUC A T. Paleogeography, paleoclimate, and source rocks. Tulsa: American Association of Petroleum Geologists, 1995: 61-79.
|
[32] |
DING X J, LIU G D, ZHA M, et al. Geochemical characterization and depositional environment of source rocks of small fault basin in Erlian Basin, northern China[J]. Marine and Petroleum Geology, 2016, 69: 231-240.
|
[33] |
王鹏万, 张磊, 李昌, 等. 黑色页岩氧化还原条件与有机质富集机制: 以昭通页岩气示范区A井五峰组-龙马溪组下段为例[J]. 石油与天然气地质, 2017, 38(5): 933-943. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705012.htm
WANG P W, ZHANG L, LI C, et al. REDOX conditions and organic matter enrichment mechanism of black shale: A case study of Wufeng Formation and lower member of Longmaxi Formation in Well A, Zhaotong Shale Gas Demonstration Zone[J]. Oil & Gas Geology, 2017, 38(5): 933-943. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705012.htm
|
[34] |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
|
[35] |
THOMSON J, JARVIS I, GREEN D R H, et al. Oxidation fronts in Madeira Abyssal Plain turbidites: Persistence of early diagenetic trace-element enrichments during burial, Site 950[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 157: 559-571.
|
[36] |
CHEN C, MU C L, ZHOU K K, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Geology, 2016, 76: 159-175.
|
[37] |
冯子辉, 方伟, 李振广, 等. 松辽盆地陆相大规模优质烃源岩沉积环境的地球化学标志[J]. 中国科学(地球科学), 2011, 41(9): 1253-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201109005.htm
FENG Z H, FANG W, LI G Z, et al. Geochemical markers of sedimentary environment of large-scale high-quality source rocks in the Songliao Basin[J]. Science in China (Earth Science), 2011, 41(9): 1253-1267. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201109005.htm
|
[38] |
WALKER C T, PRICE N P. Departure curves for computing paleosalinity from boron in illites and shales[J]. AAPG Bulletin, 1963, 47(5): 833-841.
|
[39] |
鹿坤, 左银辉, 梅冰, 等. 东濮凹陷古沉积环境及其对有机质丰度的影响[J]. 地质与勘探, 2013, 49(3): 589-594. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201303025.htm
LU K, ZUO Y H, MEI B, et al. Paleo-sedimentary environment and its influence on organic matter abundance in Dongpu Depression[J]. Geology and Exploration, 2013, 49(3): 589-594. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201303025.htm
|
[40] |
CHIVAS A R, DE DECKKER P, SHELLEY J M G. Strontium content of ostracods indicates lacustrine palaeosalinity[J]. Nature, 1985, 316: 251-253.
|
[41] |
CAO J, YANG R F, YIN W, et al. Mechanism of organic matter accumulation in residual bay environments: The Early Cretaceous Qiangtang Basin, Tibet[J]. Energy & Fuels, 2018, 32(2): 1024-1037.
|
[42] |
MURRAY R W, BUCHHOLTZ TEN BRINK M R, GERLACH D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1875-1895.
|
[43] |
杜庆祥, 郭少斌, 沈晓丽, 等. 渤海湾盆地南堡凹陷南部古近系沙河街组一段古水体特征[J]. 古地理学报, 2016, 18(2): 173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201602004.htm
DU Q X, GUO S B, SHEN X L, et al. Palaeo-water characteristics of the Member 1 of the Paleogene Shahejie Formation in the southern Nanpu Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2016, 18(2): 173-183. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201602004.htm
|
[44] |
JIANG Y H, HOU D J, LI H, et al. Impact of the paleoclimate, paleoenvironment, and algae bloom: Organic matter accumulation in the lacustrine Lucaogou Formation of Jimsar Sag, Junggar Basin, NW China[J]. Energies, 2020, 13(6): 1488.
|
[45] |
ZHANG W Z, YANG W W, XIE L Q. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China[J]. International Journal of Coal Geology, 2017, 183: 38-51.
|
[46] |
周立宏, 陈长伟, 甘华军, 等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报, 2022, 41(5): 19-30. doi: 10.19509/j.cnki.dzkq.2022.0233
ZHOU L H, CHEN C W, GAN Huajun, et al. Comprehensive evaluation of shale formation environment and shale oil potential in Shaxia sub-member of Qikou Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 19-30. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0233
|
[47] |
梁霄, 马韶光, 李郭琴, 等. 上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力: 以四川盆地威远地区威207井为例[J]. 地质科技通报, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159
LIANG X, MA S G, LI G Q, et al. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on Well W-207, Weiyuan area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0159
|
[48] |
赵文智, 朱如凯, 胡素云, 等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020, 47(6): 1079-1089. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006003.htm
ZHAO W Z, ZHU R K, HU S Y, et al. Differences in hydrocarbon Accumulation between continental organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006003.htm
|
[49] |
PARRISH J T. Paleogeography of Corg-rich rocks and the preservation versus production controversy[C]//HUC A Y. Paleogeography, paleoclimate, and source rocks. Tulsa: American Association of Petroleum Geologists, 1995: 1-20.
|
[50] |
CALVERT S E, PEDERSEN T F, NAIDU P D, et al. On the organic carbon maximum on the continental slope of the eastern Arabian Sea[J]. Journal of Marine Research, 1995, 53(2): 269-296.
|
[51] |
DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis[J]. Organic Geochemistry, 1980, 2(1): 9-31.
|
[52] |
TYSON R V, PEARSON T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1-24.
|
[53] |
INGALL E, JAHNKE R. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis[J]. Marine Geology, 1997, 139(1/2/3/4): 219-229.
|