Volume 43 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
ZENG Rui, JIANG Yanan, YAN Aoxiang, Cheng Yan, LUO Huiyuan. Coseismic slip distribution and 3D deformation field simulation of the Menyuan Mw 6.7 earthquake in Qinghai based on InSAR constraint[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 212-225. doi: 10.19509/j.cnki.dzkq.tb20240004
Citation: ZENG Rui, JIANG Yanan, YAN Aoxiang, Cheng Yan, LUO Huiyuan. Coseismic slip distribution and 3D deformation field simulation of the Menyuan Mw 6.7 earthquake in Qinghai based on InSAR constraint[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 212-225. doi: 10.19509/j.cnki.dzkq.tb20240004

Coseismic slip distribution and 3D deformation field simulation of the Menyuan Mw 6.7 earthquake in Qinghai based on InSAR constraint

doi: 10.19509/j.cnki.dzkq.tb20240004
  • Received Date: 04 Jan 2024
  • Accepted Date: 01 Jul 2024
  • Rev Recd Date: 08 May 2024
  • <p>On January 8, 2022, a <italic>M</italic><sub>w</sub> 6.7 earthquake stuck Menyuan Hui Autonomous County, Qinghai Province, resulting in extensive surface ruptures and the closure of the Lanzhou-Xinjiang high-speed railway.</p></sec><sec> <title>Objective

    This study aims to investigate the focal mechanism of the Menyuan earthquake.

    Methods

    D-InSAR technology was employed to process ascending and descending SAR data from Sentinel-1A, producing a coseismic deformation field. Using InSAR LOS deformation as a constraint, a two-step inversion method was applied to determine the geometric parameters of the earthquake fault and the detailed coseismic slip distribution. Additionally, the coseismic static Coulomb stress changes were calculated, and the seismogenic structure, along with the regional seismic hazard, was further analyzed.

    Results

    The findings reveal that the long axis of the InSAR coseismic deformation field is oriented WNW-ESE, indicating left-lateral strike-slip movement. The refined double-fault slip distribution shows that both the Lenlongling and Tuolaishan rupture segments exhibit high-inclination left-lateral strike-slip motion. To better understand the seismic deformation patterns, this study employs anelastic dislocation model and a viscoelastic half-space layered medium model to simulate the three-dimensional coseismic surface deformation, incorporating more accurate three-dimensional deformation from crustal layered models. The coseismic Coulomb stress changes suggest an earthquake risk at the western end of the Tuolaishan fault, the eastern end of the Lenlongling fault, and near the Daliang tunnel of the Lanzhou-Xinjiang high-speed railway, indicating a heightened potential for future rupture.

    Conclusion

    The research results can provide a reference for enhanced understanding of the three-dimensional crustal deformations associated with the Menyuan earthquake and the related seismic research.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    王辽, 谢虹, 袁道阳, 等. 结合野外考察的2022年门源Ms 6.9地震地表破裂带的高分七号影像特征[J]. 地震地质, 2023, 45(2): 401-421. doi: 10.3969/j.issn.0253-4967.2023.02.006

    WANG L, XIE H, YUAN D Y, et al. The surface rupture characteristics based on the GF-7 images interpretation and the field investigation of the 2022 Menyuan Ms 6.9 earthquake[J]. Seismology and Geology, 2023, 45(2): 401-421. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2023.02.006
    [2]
    FAN L P, LI B R, LIAO S R, et al. High-precision relocation of the aftershock sequence of the January 8, 2022, Ms 6.9 Menyuan earthquake[J]. Earthquake Science, 2022, 35(2): 138-145. doi: 10.1016/j.eqs.2022.01.021
    [3]
    姜文亮, 李永生, 田云锋, 等. 冷龙岭地区2016年青海门源6.4级地震发震构造特征[J]. 地震地质, 2017, 39(3): 536-549. doi: 10.3969/j.issn.0253-4967.2017.03.007

    JIANG W L, LI Y S, TIAN Y F, et al. Research of seismogenic structure of the Menyuan Ms 6.4 earthquake on January 21, 2016 in Lenglongling area of NE Tibetan Plateau[J]. Seismology and Geology, 2017, 39(3): 536-549. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2017.03.007
    [4]
    朱琳, 戴勇, 石富强, 等. 祁连-海原断裂带库仑应力演化及地震危险性[J]. 地震学报, 2022, 44(2): 223-236.

    ZHU L, DAI Y, SHI F Q, et al. Coulomb stress evolution and seismic hazards along the Qilian-Haiyuan fault zone[J]. Acta Seismologica Sinica, 2022, 44(2): 223-236. (in Chinese with English abstract)
    [5]
    GAUDEMER Y, TAPPONNIER P, MEYER B, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu(China)[J]. Geophysical Journal International, 1995, 120(3): 599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x
    [6]
    董佳慧, 牛瑞卿, 亓梦茹, 等. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报, 2022, 41(2): 187-196. doi: 10.19509/j.cnki.dzkq.2022.0024

    DONG J H, NIU R Q, BIAN M R, et al. Identification of geological hazards based on the combination of InSAR technology and disaster background indications[J]. Bulletin of Geologic Science and Technology, 2022, 41(2): 187-196. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0024
    [7]
    李志伟, 许文斌, 胡俊, 等. InSAR部分地学参数反演[J]. 测绘学报, 2022, 51(7): 1458-1475.

    LI Z W, XU W B, HU J, et al. Partial geoscience parameters inversion from InSAR observation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475. (in Chinese with English abstract)
    [8]
    LI Y S, JIANG W L, LI Y J, et al. Coseismic rupture model and tectonic implications of the January 7 2022, Menyuan Mw 6.6 earthquake constraints from InSAR observations and field investigation[J]. Remote Sensing, 2022, 14(9): 2111. doi: 10.3390/rs14092111
    [9]
    李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897.

    LI Z H, HAN B Q, LIU Z J, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897. (in Chinese with English abstract)
    [10]
    YANG H F, WANG D, GUO R M, et al. Rapid report of the 8 January 2022 MS 6.9 Menyuan earthquake, Qinghai, China[J]. Earthquake Research Advances, 2022, 2(1): 100113. doi: 10.1016/j.eqrea.2022.100113
    [11]
    许光煜, 徐锡伟, 易亚宁, 等. 2022年青海门源Mw 6.6地震发震构造: 来自InSAR和高分影像约束[J]. 地球物理学报, 2022, 65(12): 4704-4724.

    XU G Y, XU X W, YI Y N, et al. Seismogenic structure of the 2022 Menyuan Mw 6.6 earthquake, Qinghai Province, constrained by InSAR and Gaofen-7 observation[J]. Chinese Journal of Geophysics, 2022, 65(12): 4704-4724. (in Chinese with English abstract)
    [12]
    于仪, 李雪, 孙振, 等. 2022年青海门源地震震源机制与同震滑动分布研究[J]. 大地测量与地球动力学, 2023, 43(1): 46-51.

    YU Y, LI X, SUN Z, et al. Investigation on focal mechanism and coseismic slip distribution for Menyuan earthquake in 2022[J]. Journal of Geodesy and Geodynamics, 2023, 43(1): 46-51. (in Chinese with English abstract)
    [13]
    郑瑞, 王琪, 邹蓉, 等. 2022年青海门源Mw 6.6地震InSAR同震形变场与震源特征[J]. 地球物理学报, 2023, 66(8): 3218-3229.

    ZHENG R, WANG Q, ZOU R, et al. InSAR coseismic deformation monitoring and source characteristics of the 2022 Qinghai Menyuan Mw 6.6 earthquake[J]. Chinese Journal of Geophysics, 2023, 66(8): 3218-3229. (in Chinese with English abstract)
    [14]
    周甜, 朱武, 刘晓宇, 等. 2022年青海门源Mw 6.6地震InSAR三维同震形变估计及断层滑动分布反演[J]. 大地测量与地球动力学, 2024, 44(7): 725-731.

    ZHOU T, ZHU W, LIU X Y, et al. Estimation of three-dimensional coseismic deformation and inversion of fault slip distribution for the Menyuan, Qinghai Mw 6.6 earthquake in 2022 using InSAR[J]. Journal of Geodesy and Geodynamics, 2024, 44(7): 725-731. (in Chinese with English abstract)
    [15]
    LIU J H, HU J, LI Z W, et al. Three-dimensional surface displacements of the 8 January 2022 Mw 6.7 Menyuan earthquake, China from Sentinel-1 and ALOS-2 SAR observations[J]. Remote Sensing, 2022, 14(6): 1404.
    [16]
    MITSAKAKI C, RONDOYANNI T, ANASTASIOU D, et al. Static stress changes and fault interactions in Lefkada Island, western Greece[J]. Journal of Geodynamics, 2013, 67: 53-61.
    [17]
    GOLDSTEIN R M, ZEBKER H A, BARNETT T P. Remote sensing of ocean currents[J]. Science, 1989, 246(4935): 1282-1285.
    [18]
    HE X L, LI H B, WANG H, et al. A new insight into the influence of composition of fault rocks on aseismic and seismic fault slip[J]. Acta Geologica Sinica - English Edition, 2019, 93(3): 760-762.
    [19]
    殷鹏程, 孙义贤, 庞于涛, 等. 考虑温度效应下冻土层对桥梁结构地震响应的影响[J]. 地质科技通报, 2023, 42(5): 27-35. doi: 10.19509/j.cnki.dzkq.tb20220505

    YIN P C, SUN Y X, PANG Y T, et al. Influence of frozen soil on the seismic response of bridge structures considering the effect of temperature[J]. Bulletin of Geologic Science and Technology, 2023, 42(5): 27-35. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220505
    [20]
    JÓNSSON S, ZEBKER H, SEGALL P, et al. Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389.
    [21]
    OKADA Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040.
    [22]
    BAGNARDI M, HOOPER A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211.
    [23]
    ALBANO M, POLCARI M, BIGNAMI C, et al. Did anthropogenic activities trigger the 3 April 2017 Mw 6.5 Botswana earthquake?[J]. Remote Sensing, 2017, 9(10): 1028.
    [24]
    ZHAO D Z, QU C Y, CHEN H, et al. Tectonic and geometric control on fault Kinematics of the 2021 Mw 7.3 Maduo(China)earthquake inferred from interseismic, coseismic, and postseismic InSAR observations[J]. Geophysical Research Letters, 2021, 48(18): e2021GL095417.
    [25]
    WANG R J, DIAO F, HOECHNER A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]//Anon. EGU General Assembly Conference Abstracts. [ S. l. ]: [s. n. ], 2013.
    [26]
    潘家伟, 李海兵, CHEVALIER M, 等. 2022年青海门源Ms 6.9地震地表破裂带及发震构造研究[J]. 地质学报, 2022, 96(1): 215-231.

    PAN J W, LI H B, CHEVALIER M, et al. Coseismic surface rupture and seismogenic structure of the 2022 Ms 6.9 Menyuan earthquake, Qinghai Province, China[J]. Acta Geologica Sinica, 2022, 96(1): 215-231. (in Chinese with English abstract)
    [27]
    袁道阳, 谢虹, 苏瑞欢, 等. 2022年1月8日青海门源Ms 6.9地震地表破裂带特征与发震机制[J]. 地球物理学报, 2023, 66(1): 229-244.

    YUAN D Y, XIE H, SU R H, et al. Characteristics of co-seismic surface rupture zone of Menyuan Ms 6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics, 2023, 66(1): 229-244. (in Chinese with English abstract)
    [28]
    张晁军, 石耀霖, 黄建平. 黏弹性分层和重力作用对地震形变场数值模拟的影响[J]. 西北地震学报, 2008, 30(3): 201-207.

    ZHANG C J, SHI Y L, HUANG J P. Influence of the role of visco-elastic stratification and gravity on numerical simulation of coseismic deformation field[J]. China Earthquake Engineering Journal, 2008, 30(3): 201-207. (in Chinese with English abstract)
    [29]
    WANG R J, LORENZO-MARTÍN F, ROTH F. PSGRN/PSCMP: A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 2006, 32(4): 527-541.
    [30]
    邵志刚, 傅容珊, 薛霆虓, 等. 以Burgers体模型模拟震后黏弹性松弛效应[J]. 大地测量与地球动力学, 2007, 27(5): 31-37.

    SHAO Z G, FU R S, XUE T X, et al. Simulating postseismic viscoelastic deformation based on Burgers model[J]. Journal of Geodesy and Geodynamics, 2007, 27(5): 31-37. (in Chinese with English abstract)
    [31]
    HE J K, LU S J, WANG W M. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan Plateau and surrounding regions[J]. Tectonophysics, 2013, 584: 257-266.
    [32]
    邵志刚, 傅容珊, 薛霆虓, 等. 昆仑山Ms 8.1级地震震后变形场数值模拟与成因机理探讨[J]. 地球物理学报, 2008, 51(3): 805-816.

    SHAO Z G, FU R S, XUE T X, et al. The numerical simulation and discussion on mechanism of postseismic deformation after Kunlun Ms 8.1 earthquake[J]. Chinese Journal of Geophysics, 2008, 51(3): 805-816. (in Chinese with English abstract)
    [33]
    阎渊. 青海门源Ms 6.9地震同震破裂的隧道破坏效应与启示[J]. 地质力学学报, 2023, 29(6): 869-878.

    YAN Y. The tunnel damage effects and implications of the coseismic rupture of the Menyuan Ms 6.9 earthquake in Qinghai, China[J]. Journal of Geomechanics, 2023, 29(6): 869-878. (in Chinese with English abstract)
    [34]
    石耀霖, 曹建玲. 库仑应力计算及应用过程中若干问题的讨论: 以汶川地震为例[J]. 地球物理学报, 2010, 53(1): 102-110.

    SHI Y L, CAO J L. Some aspects in static stress change calculation: Case study on Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2010, 53(1): 102-110. (in Chinese with English abstract)
    [35]
    KING G C P, STEIN R S, LIN J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 935-953.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(92) PDF Downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return