Citation: | XU Donghao, QIN Lanzhi, LI Junjie, CAI Kun, XIE Jingjing. Sequence stratigraphic architectures and sand-body distribution models of the Pinghu Formation in the Pingbei slope belt of the Xihu Depression[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 154-166. doi: 10.19509/j.cnki.dzkq.tb20240027 |
The Pingbei slope belt is one of the key zones for the exploration of lithologic reservoirs in the Xihu Depression. However, the exploration process was inhibited by issues of small thickness and significant lateral variation of sand-bodies. Therefore, research on the tectonic-sedimentary response, including the stratigraphic development patterns, deposition center evolution, and sand-body distribution mechanisms in different tectonic units, is urgently needed.
Integrating the newly obtained well drilling, well logging, and high-resolution 3D seismic data, a high-precision sequence stratigraphic framework was established and the third-order sequences and systems tracts were analysed in the Pinghu Formation of the Pingbei slope belt.
Based on differences in palaeogeomorphology and fault systems, the tectonic-sedimentary units of the Pingbei slope zone were classified. Differences in fault styles, stratigraphic contact relationships, and sedimentary filling patterns under different sequence stratigraphic architectures were analysed in various tectonic units. Additionally, the controlling factors and models of sand-body distribution in various sequence stratigraphic architectures were discussed.
This study revealed that the Pingbei slope zone can be divided into four types of sequence stratigraphic architectures: steep fault slope, opposite fault step, reversal step fault, and forward step fault. The sequence stratigraphic architectures that were controlled by factors of sediment supply, fault activity, palaeogeomorphic, and base-level cycles generated four sand-body distribution models. Research on the differences in sequence configurations and sand-body distribution models in different tectonic units is important for promoting the exploration of lithological reservoirs in the Pingbei slope belt of the Xihu Depression.
[1] |
EXON N F, BURGER D. Sedimentary cycles in the Surat Basin and global changes of sea level[J]. BMR Journal of Australian Geology & Geophysics, 1981, 6: 153-159.
|
[2] |
CROSS T A, LESSENGER M A. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation[C]//Anon. Proceeding of Northwestern European Sequence Stratigraphy Congress. [S. l.]: [s. n.], 1994: 105-123.
|
[3] |
AITKEN J F. FLINTS S. The application of high-resolution stratigraphy to fluvial: A case study from the Upper Carboniferous Breathitt Group, eastern Kentucky, USA[J]. Sedimentilogy, 1995, 42: 3-30. doi: 10.1111/j.1365-3091.1995.tb01268.x
|
[4] |
BURGESS P M, GURNIS M, MORESI, L. Formation of sequence in the cratonic interior of North America by inter-action between mantle, eustatic, and stratigraphic processes[J]. Geological Society of America Bulletin, 1997, 109(12): 1515-1535. doi: 10.1130/0016-7606(1997)109<1515:FOSITC>2.3.CO;2
|
[5] |
CATUNEANU O. Principles of sequence stratigraphy[M]. Amsterdam: Elsevier, 2006.
|
[6] |
ESCALONA A, MANN P. Sequence-stratigraphic analysis of Eocene clastic foreland basin deposits in Central Lake Maracaibo using high-resolution well correlation and 3-D seismic data[J]. AAPG Bulletin, 2006, 90(4): 581-623. doi: 10.1306/10130505037
|
[7] |
吴和源. 朝向层序地层学标准化: 层序地层学研究的一个重要科学命题[J]. 沉积学报, 2017, 35(3): 425-435. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703001.htm
WU H Y, Towards the standardization of sequence stratigraphy: An important scientific proposition of sequence stratigraphy[J]. Acta Sedimentology Sinica, 2017, 35(3): 425-435. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703001.htm
|
[8] |
李峰峰, 郭睿, 余义常. 层序地层划分方法进展及展望. 地质科技情报[J], 2019, 38(4): 215-224.
LI F F, GUO R, YU Y C. Progress and prospect of the division of sequence stratigraphy[J]. Geological Science and Technology Information, 2019, 38(4): 215-224. (in Chinese with English abstract)
|
[9] |
衡立群, 张青青, 王健, 等. "V-C"层序地层学方法及其在油田开发中后期的应用[J]. 中国海上油气, 2020, 32(5): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202005010.htm
HENG L Q, ZHANG Q Q, WANG J, et al. "V-C" sequence stratigraphic analysis method and its application in the middle-late stages of oilfield development[J]. China Offshore Oil and Gas, 2020, 32(5): 82-90. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202005010.htm
|
[10] |
张自力, 朱筱敏, 张锐锋, 等. 典型箕状断陷湖盆层序划分及层序结构样式: 以霸县凹陷古近系为例[J]. 地球科学, 2020, 45(11): 4218-4235. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011026.htm
ZHANG Z L, ZHU X M, ZHANG R F, et al. Sequence framework and sequence filling style in lacustrine rift basin: Taking Paleogene in Baxian Sag as an example[J]. Earth Science, 2020, 45(11): 4218-4235. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011026.htm
|
[11] |
邓宏文, 王洪亮, 李熙喆. 层序地层基准面的识别与对比技术及应用[J]. 石油与天然气地质, 1996. 17(3): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT603.001.htm
DENG H W, WANG H L, LI X Z. Identification and correlation techniques of sequence stratigraphic base-levels and their application[J]. Oil & Gas Geology, 1996, 17(3): 177-184. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT603.001.htm
|
[12] |
郑荣才, 尹世民, 彭军. 基准面旋回结构与叠加样式的沉积动力学分析[J]. 沉积学报, 2000, 18(3): 369-375. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003007.htm
ZHENG R C, YIN S M, PENG J. Sedimentary dynamic analysis of sequence structure and stacking pattern of base-level cycle[J]. Acta Sedimantologica Sinica, 2000, 18(3): 369-375. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003007.htm
|
[13] |
郑荣才, 彭军, 彭光明, 等. 高分辨率层序分析在油藏开发工程中的应用: 以百色盆地仑35块那二段油藏为例[J]. 沉积学报, 2003, 21(4): 654-662. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200304017.htm
ZHENG R C, PENG J, PENG G M, et al. Analysis of high-resolution sequence stratigraphy of the Second Member of Nadu Formation in Lun-35 Block of Baise Basin and its application in development of oil reservoir[J]. Acta Sedimentologica Sinica, 2003, 21(4): 654-662. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200304017.htm
|
[14] |
高志勇, 郑荣才, 罗平. 陆相高分辨率层序地层中洪泛面特征研究[J]. 成都理工大学学报(自然科学版), 2007, 34(1): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200701007.htm
GAO Z Y, ZHENG R C, LUO P. A study of the flooding surface in the high-resolution stratigraphic sequence of continental deposit[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2007, 34(1): 47-56. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200701007.htm
|
[15] |
朱红涛, 李敏, 刘强虎, 等. 陆内克拉通盆地层序地层构型及其控制因素[J]. 地球科学, 2010, 35(6): 1035-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006015.htm
ZHU H T, LI M, LIU Q H, et al. Sequence stratigraphic architectures of intra-cratonic basin and its controlling factors[J]. Earth Science, 2010, 35(6): 1035-1040. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006015.htm
|
[16] |
朱红涛, 刘可禹, 朱筱敏, 等. 陆相盆地层序构型多元化体系[J]. 地球科学, 2018, 43(3): 770-785.
ZHU H T, LIU K Y, ZHU X M, et al. Varieties of sequence stratigraphic configurations in continental basins[J]. Earth Science, 2018, 43(3): 770-785. (in Chinese with English abstract)
|
[17] |
年涛, 姜在兴, 刘惠民, 等. 东营凹陷孔一段"红-灰"岩层旋回沉积记录: 以王家岗地区王46井为例[J]. 地质科技通报, 2022, 41(3): 32-43. doi: 10.19509/j.cnki.dzkq.2021.0072
NIAN T, JIANG Z X, LIU H M, et al. Cyclic sedimentary record of "red-greyish green" beds in the First Member of Eocene Kongdian Formation, Dongying Sag: An example from the Well Wang 46 in Wangjiagang area[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 32-43. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0072
|
[18] |
吴嘉鹏, 张兰, 万丽芬, 等. 西湖凹陷平湖组物源分析[J]. 中国石油勘探, 2017, 22(2): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201702006.htm
WU J P, ZHANG L, WAN L F, et al. Provenance analysis of Pinghu Formation in Xihu Sag[J]. China Petroleum Exploration, 2017, 22(2): 50-57. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201702006.htm
|
[19] |
XU F H, XU G S, LIU Y, et al. Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structural belt in Xihu Sag, East China Sea Basin[J]. Petroleum Exploration and Development, 2020, 47(1): 101-113. doi: 10.1016/S1876-3804(20)60009-X
|
[20] |
陈忠云, 张建培, 张涛, 等. 西湖凹陷层序划分及海平面变化响应[J]. 海洋地质前沿, 2013, 29(9): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201309004.htm
CHEN Z Y, ZHANG J P, ZHANG T, et al. Stratigraphic sequence in Xihu Sag and their response to sea level changes[J]. Marine Geology Frontiers, 2013, 29(9): 15-20. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201309004.htm
|
[21] |
蔡华, 张建培. 东海西湖凹陷平湖斜坡带断层特征及其封闭性[J]. 海洋地质前沿, 2013, 29(4): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201304006.htm
CAI H, ZHANG J P. Characteristics of faults on the Pinghu Slope of Xihu Sag, The East China Sea Shelf Basin and their sealing capacity[J]. Marine Geology Frontiers, 2013, 29(4): 20-26. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201304006.htm
|
[22] |
WANG W L, CHENG Y Z, XIAN G, et al. Effect of burial history on diagenetic and reservoir-forming process of the Oligocene sandstone in Xihu Sag, East China Sea Basin[J]. Marine and Petroleum Geology, 2020, 112: 1-23.
|
[23] |
刘洋. 东海盆地西湖凹陷沉积记录的天文旋回响应[J]. 地质科技通报, 2020, 39(3): 120-128. doi: 10.19509/j.cnki.dzkq.2020.0313
LIU Y. Response to astronomical forcing of sedimentary record in Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 120-128. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0313
|
[24] |
ZHAO Q, ZHU H T, ZHOU X H, et al. Tidal sand ridges seismic identification and its application in the Xihu Depression, East China Sea Shelf Basin: Enlightenment to hydrocarbon exploration[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110246.
|
[25] |
蔡华, 张建培, 唐贤君. 西湖凹陷断裂系统特征及其控藏机制[J]. 天然气工业, 2014, 34(10): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201410004.htm
CAI H, ZHANG J P, TANG X J. Characteristics of the fault systems and their control on hydrocarbon accumulation in the Xihu Sag, East China Sea Shelf Basin[J]. Nature Gas Industry, 2014, 34(10): 18-26. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201410004.htm
|
[26] |
周心怀, 高顺莉, 高伟中, 等. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测[J]. 中国石油勘探, 2019, 24(2): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902003.htm
ZHOU X H, GAO S L, GAO W Z, et al. Formation and distribution of marine-continental transitional lithologic reservoirs in Pingbei slope belt, Xihu Sag, East China Sea Shelf Basin[J]. China Petroleum Exploration, 2019, 24(2): 153-164. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902003.htm
|
[27] |
蔡华, 秦兰芝, 刘英辉. 西湖凹陷平北斜坡带海陆过渡相源-汇系统差异性及其耦合模式[J]. 地球科学, 2019, 44(3): 880-897. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903016.htm
CAI H, QIN L Z, LIU Y H. Differentiation and the coupling model of source-to-sink systems with transitional facies in the Pingbei slope of the Xihu Sag, East China Sea[J]. Earth Science, 2019, 44(3): 880-897. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903016.htm
|
[28] |
蒋一鸣, 邵龙义, 李帅, 等. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究[J]. 现代地质, 2020, 34(1): 141-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202001013.htm
JIANG Y M, SHAO L Y, LI S, et al. Deposition system and stratigraphy of Pinghu Formation in Pinghu Tectonic Belt, Xihu Sag[J]. Geoscience, 2020, 34(1): 141-153. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202001013.htm
|
[29] |
赵军, 唐贤君, 蒋一鸣, 等. 东海盆地西湖凹陷西北缘中始新世构造变革厘定及成因探讨[J]. 地质科技通报, 2020, 39(3): 58-67. doi: 10.19509/j.cnki.dzkq.2020.0307
ZHAO J, TANG X J, JIANG Y M, et al. Confirmation and genesis of the Middle Eocene tectonic transformation in northwestern margin of Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 58-67. doi: 10.19509/j.cnki.dzkq.2020.0307
|