Volume 43 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
WANG Xinghua, LI Xiaoqian, XIE Xiaohan, HE Ningjie, YU Hanyu. Impact of soil factors on soil-gas partition coefficient of trichloroethylene[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 272-278. doi: 10.19509/j.cnki.dzkq.tb20240028
Citation: WANG Xinghua, LI Xiaoqian, XIE Xiaohan, HE Ningjie, YU Hanyu. Impact of soil factors on soil-gas partition coefficient of trichloroethylene[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 272-278. doi: 10.19509/j.cnki.dzkq.tb20240028

Impact of soil factors on soil-gas partition coefficient of trichloroethylene

doi: 10.19509/j.cnki.dzkq.tb20240028
More Information
  • Objective

    Soil-air partitioning is a critical process influencing the environmental fate of volatile organic pollutants and a significant contributor to the risk of respiratory exposure.

    Methods

    Four typical soils-loess, red soil, black soil and sand were used to identify the soil factors affecting the partitioning of trichloroethylene. The partitioning behaviour of trichloroethylene at the soil-atmosphere interface was quantitatively investigated by single-factor controlled batch experiments, and the quantitative relationship between the trichloroethylene soil gas partition coefficient and soil factors was determined.

    Results

    The results showed significant differences in the soil-gas partition coefficients of the four typical soils (black soil>red soil>sandy soil>loess soil). The main influencing factors for the partition coefficient of black soil were primarily particle size, water content, and organic matter content. Whereas, for the other three soils, the main factors were particle size and water content.

    Conclusion

    The relationships between the soil gas partition coefficient of TCE and soil factors in black soil can be quantitatively expressed as follows: KSA=-0.744X1-0.224X2+0.704X3; sand: KSA=-0.724X1-0.222X2; loess: KSA=-0.291X1-0.268X2; and red soil: KSA=-0.589X1-0.338X2 (X1: water content; X2: particle size; X3: organic matter content). These research aids in a deeper understanding of the distribution behaviour of trichloroethylene at the soil-atmosphere interface in typical soils in China and the influence of soil factors and provide a theoretical basis for the quantification of multifactor coupling effects and health risk assessment in the process of soil gas partitioning.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    CABRERIZO A, DACHS J, MOECKEL C, et al. Factors influencing the soil-air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere[J]. Environmental Science & Technology, 2011, 45(11): 4785-4792.
    [2]
    WU J G. Soil-air partition coefficients of persistent organic pollutants decline from climate warming: A case study in Yantai County, Shandong Province, China[J]. Water, Air, & Soil Pollution, 2020, 231(7): 371.
    [3]
    HAGEMAN K J, BOGDAL C, SCHERINGER M. Long-range and regional atmospheric transport of POPs and implications for global cycling[M]//Anon. Persistent organic pollutants(POPs): Analytical techniques, environmental fate and biological effects. Amsterdam: Elsevier, 2015: 363-387.
    [4]
    HE X, CHEN S, QUAN X, et al. Temperature-dependence of soil/air partition coefficient for polychlorinated biphenyls at subzero temperatures[J]. Chemosphere, 2009, 77(10): 1427-1433. doi: 10.1016/j.chemosphere.2009.09.001
    [5]
    RIAZ R, MALIK R N, DE WIT C A. Soil-air partitioning of semivolatile organic compounds in the Lesser Himalaya region: Influence of soil organic matter, atmospheric transport processes and secondary emissions[J]. Environmental Pollution, 2021, 291: 118006. doi: 10.1016/j.envpol.2021.118006
    [6]
    HIPPELEIN M, MCLACHLAN M S. Soil/air partitioning of semivolatile organic compounds: 1. Method development and influence of physical chemical properties[J]. Environmental Science & Technology, 1998, 32(2): 310-316.
    [7]
    HIPPELEIN M, MCLACHLAN M S. Soil/air partitioning of semivolatile organic compounds: 2. Influence of temperature and relative humidity[J]. Environmental Science & Technology, 2000, 34(16): 3521-3526.
    [8]
    MEIJER S N, SHOEIB M, JONES K C, et al. Air-soil exchange of organochlorine pesticides in agricultural soils: 2. Laboratory measurements of the soil-air partition coefficient[J]. Environmental Science & Technology, 2003, 37(7): 1300-1305.
    [9]
    MOECKEL C, GASIC B, MACLEOD M, et al. Estimation of the source strength of polybrominated diphenyl ethers based on their diel variability in air in Zurich, Switzerland[J]. Environmental Science & Technology, 2010, 44(11): 4225-4231.
    [10]
    DEGRENDELE C, AUDY O, HOFMAN J, et al. Diurnal variations of air-soil exchange of semivolatile organic compounds(PAHs, PCBs, OCPs, and PBDEs)in a central European receptor area[J]. Environmental Science & Technology, 2016, 50(8): 4278-4288.
    [11]
    AHN J, RAO G Y, MAMUN M, et al. Soil-air partitioning of volatile organic compounds into soils with high water content[J]. Environmental Chemistry, 2020, 17(8): 545-557. doi: 10.1071/EN20032
    [12]
    ZHANG Y P, BI E P, CHEN H H. Soil-air partitioning of polychlorinated biphenyls and total dichloro-diphenyl-trichloroethanes[J]. Journal of Earth Science, 2014, 25(4): 741-748. doi: 10.1007/s12583-014-0450-6
    [13]
    何欣, 赵慧敏, 陈硕, 等. 温度对三氯乙烯在土壤中土/气分配系数的影响[J]. 环境化学, 2007, 26(3): 298-301. doi: 10.3321/j.issn:0254-6108.2007.03.006

    HE X, ZHAO H M, CHEN S, et al. Influence of temperature on soil/air partitioning of trichloroethylene in soil in the northeast of China[J]. Environmental Chemistry, 2007, 26(3): 298-301. (in Chinese with English abstract) doi: 10.3321/j.issn:0254-6108.2007.03.006
    [14]
    朱辉, 叶淑君, 吴吉春, 等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021, 28(5): 26-34.

    ZHU H, YE S J, WU J C, et al. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers, 2021, 28(5): 26-34. (in Chinese with English abstract)
    [15]
    LASH L H, PUTT D A, HUANG P, et al. Modulation of hepatic and renal metabolism and toxicity of trichloroethylene and perchloroethylene by alterations in status of cytochrome P450 and glutathione[J]. Toxicology, 2007, 235(1/2): 11-26.
    [16]
    朱鸿鹄. 工程地质界面: 从多元表征到演化机理[J]. 地质科技通报, 2023, 42(1): 1-19. doi: 10.19509/j.cnki.dzkq.tb20220661

    ZHU H H. Engineering geological interface: From multivariate characterization to evolution mechanism[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 1-19. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220661
    [17]
    倪进治, 骆永明, 张长波. 长江三角洲地区土壤环境质量与修复研究: Ⅲ. 农业土壤不同粒径组分中菲和苯并[a]芘的分配特征[J]. 土壤学报, 2006, 43(5): 717-722. doi: 10.3321/j.issn:0564-3929.2006.05.002

    NI J Z, LUO Y M, ZHANG C B. Soil environmental quality and remediation in Yangtze River Delta region: Ⅲ. Distribution characteristics of phenanthrene and benzo[a]pyrene in particle-size separates of agricultural soils[J]. Acta Pedologica Sinica, 2006, 43(5): 717-722. (in Chinese with English abstract) doi: 10.3321/j.issn:0564-3929.2006.05.002
    [18]
    张菁菁. 六氯苯在土壤不同粒径级份上的吸附行为研究[J]. 环境科学与技术, 2011, 34(8): 49-53.

    ZHANG J J. Detailed sorption isotherms of HCB on soil different particle-size fractions[J]. Environmental Science & Technology, 2011, 34(8): 49-53. (in Chinese withEnglish abstract)
    [19]
    王楠. 低分子量有机酸对土壤不同粒径组分吸附PAHs的影响[D]. 南京: 南京农业大学, 2012.

    WANG N. Low-molecular-weight organic acids influence the sorption of pahs by different particle size fractions of soils[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)
    [20]
    GOSS K U, BUSCHMANN J, SCHWARZENBACH R P. Adsorption of organic vapors to air-dry soils: Model predictions and experimental validation[J]. Environmental Science & Technology, 2004, 38(13): 3667-3673.
    [21]
    REICHMAN R, ROLSTON D E, YATES S R, et al. Diurnal variation of diazinon volatilization: Soil moisture effects[J]. Environmental Science & Technology, 2011, 45(6): 2144-2149.
    [22]
    DIAMOND M L, MELYMUK L, CSISZAR S A, et al. Estimation of PCB stocks, emissions, and urbanfate: Will our policies reduce concentrations and exposure?[J]. Environmental Science & Technology, 2010, 44(8): 2777-2783.
    [23]
    ANDREASEN N, JACKSON R, RUDRA A, et al. From land to sea: Provenance, composition, and preservation of organic matter in a marine sediment record from the north-east Greenland shelf spanning the Younger Dryas-Holocene[J]. Boreas, 2023, 52(4): 459-475. doi: 10.1111/bor.12630
    [24]
    ISLAM M N, HUANG L D, SICILIANO S D. Inclusion of molecular descriptors in predictive models improves pesticide soil-air partitioning estimates[J]. Chemosphere, 2020, 248: 126031. doi: 10.1016/j.chemosphere.2020.126031
    [25]
    YADAV I C, DEVI N L, LI J, et al. Polychlorinated biphenyls in Nepalese surface soils: Spatial distribution, air-soil exchange, and soil-air partitioning[J]. Ecotoxicology and Environmental Safety, 2017, 144: 498-506. doi: 10.1016/j.ecoenv.2017.06.057
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(25) PDF Downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return