Citation: | WEN Jie, XU Shang, GOU Qiyang, ZHAO Tongxu, WANG Yufan, LIU Bingchang, WEN Kang. Research status and significance of shale oil micromigration[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 1-14. doi: 10.19509/j.cnki.dzkq.tb20240034 |
The micromigration of shale oil refers to the phenomenon in which oil is generated in organic-rich layers and expelled at short distances to adjacent, preferable porous and permeable, organic-lean layers in shale systems. Micromigration can effectively improve the oil content and quality of organic-lean layers, even surpassing some organic-rich shale layers based on the exploration practices. Therefore, it is necessary to conduct a systematic study on the micromigration phenomenon of shale oil.
Based on the current research progress, this paper first identifies the main tracers of shale oil micromigration, which include rock pyrolysis parameters, hydrocarbon components, biomarkers, NSO compounds, as well as isotopes. The fundamental principle relies on fractionation between migrated hydrocarbons and retained hydrocarbons based on their geochemical properties. Analysis revealed that micromigration can lead to a dispersed distribution of hydrocarbon generation activation energy in organic-lean shale layers, resulting in an earlier hydrocarbon generation threshold. Moreover, the accumulation of light hydrocarbons in a free state in organic-lean layers can further increase the difference of hydrocarbon components between generative units and in-source reservoirs, thereby affecting the oil-bearing and mobility characteristics of shale. Based on the effects of petroleum migration and geological zonation, this paper reveals that micromigration occurs throughout the entire process of hydrocarbon generation, expulsion, and retention. It serves as a bridge connecting all elements of petroleum accumulation within shale systems, influencing the differential enrichment of shale oil.
Comprehensive geochemical and geophysical methods are effective ways to identify micromigration in shale systems and will provide a new perspective for revealing the dynamic differential enrichment of lacustrine shale oil.
[1] |
金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm
JIN Z J, WANG G P, LIU G X, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm
|
[2] |
黄志龙, 马剑, 吴红烛, 等. 马朗凹陷芦草沟组页岩油流体压力与初次运移特征[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 7-11. doi: 10.3969/j.issn.1673-5005.2012.05.002
HUANG Z L, MA J, WU H Z, et al. Fluid pressure and primary migration characteristics of shale oil of Lucaogou Formation in Malang Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 7-11. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-5005.2012.05.002
|
[3] |
LIANG C, CAO Y C, LIU K Y, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 112-128. doi: 10.1016/j.gca.2018.03.017
|
[4] |
MA X X, LI M W, PANG X Q, et al. Paradox in bulk and molecular geochemical data and implications for hydrocarbon migration in the inter-salt lacustrine shale oil reservoir, Qianjiang Formation, Jianghan Basin, central China[J]. International Journal of Coal Geology, 2019, 209: 72-88. doi: 10.1016/j.coal.2019.05.005
|
[5] |
HU S Z, LI S F, XIA L W, et al. On the internal oil migration in shale systems and implications for shale oil accumulation: A combined petrological and geochemical investigation in the Eocene Nanxiang Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106493. doi: 10.1016/j.petrol.2019.106493
|
[6] |
SANDVIK E I, YOUNG W A, CURRY D J. Expulsion from hydrocarbon sources: The role of organic absorption[J]. Organic Geochemistry, 1992, 19(1/3): 77-87.
|
[7] |
赵悦, 蔡进功, 谢奥博, 等. 淡水和咸水湖相泥质烃源岩不同赋存态有机质的地球化学特征[J]. 石油实验地质, 2018, 40(5): 705-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201805015.htm
ZHAO Y, CAI J G, XIE A B, et al. Geochemical investigation of organic matter of various occurrences released via sequential treatments of two argillaceous source rock samples from fresh and saline lacustrine environments[J]. Petroleum Geology&Experiment, 2018, 40(5): 705-715. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201805015.htm
|
[8] |
ZHANG W, FENG Q H, WANG S, et al. Oil diffusion in shale nanopores: Insight of molecular dynamics simulation[J]. Journal of Molecular Liquids, 2019, 290: 111183. doi: 10.1016/j.molliq.2019.111183
|
[9] |
王森, 冯其红, 查明, 等. 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟[J]. 石油勘探与开发, 2015, 42(6): 772-778. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506011.htm
WANG S, FENG Q H, ZHA M, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration and Development, 2015, 42(6): 772-778. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506011.htm
|
[10] |
CUI R H, FENG Q H, CHEN H W, et al. Multiscale random pore network modeling of oil-water two-phase slip flow in shale matrix[J]. Journal of Petroleum Science and Engineering, 2019, 175: 46-59. doi: 10.1016/j.petrol.2018.12.026
|
[11] |
VALVATNE P H, BLUNT M J. Predictive pore-scale modeling of two-phase flow in mixed wet media[J]. Water Resources Research, 2004, 40(7): W07406.
|
[12] |
RAOOF A, HASSANIZADEH S M. Saturation-dependent solute dispersivity in porous media: Pore-scale processes[J]. Water Resources Research, 2013, 49(4): 1943-1951. doi: 10.1002/wrcr.20152
|
[13] |
WANG S, FENG Q H, DONG Y L, et al. A dynamic pore-scale network model for two-phase imbibition[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 118-129. doi: 10.1016/j.jngse.2015.06.005
|
[14] |
LUCENA S M P, GOMES V A, GONÇALVES D V, et al. Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials[J]. Carbon, 2013, 61: 624-632. doi: 10.1016/j.carbon.2013.05.046
|
[15] |
黄涛, 程林松, 曹仁义, 等. 页岩油在无机矿物表面赋存运移特征的分子动力学模拟[J]. 西安石油大学学报(自然科学版), 2022, 37(4): 42-48. doi: 10.3969/j.issn.1673-064X.2022.04.006
HUANG T, CHENG L S, CAO R Y, et al. Molecular dynamics simulation of occurrence and migration characteristics of shale oil on inorganic mineral surface[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2022, 37(4): 42-48. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-064X.2022.04.006
|
[16] |
胡钦红, 刘惠民, 黎茂稳, 等. 东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体-示踪剂运移[J]. 石油学报, 2018, 39(3): 278-289. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803003.htm
HU Q H, LIU H M, LI M W, et al. Wettability, pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Acta Petrolei Sinica, 2018, 39(3): 278-289. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803003.htm
|
[17] |
JARVIE D M. Shale resource systems for oil and gas: Part 2: Shale-oil resource systems[M]. [S. l. ]: AAPG Memoir, 2012: 89-119.
|
[18] |
张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm
ZHANG J C, LIN L M, LI Y X, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm
|
[19] |
姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm
JIANG Z X, ZHANG W Z, LIANG C, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm
|
[20] |
聂海宽, 张培先, 边瑞康, 等. 中国陆相页岩油富集特征[J]. 地学前缘, 2016, 23(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm
NIE H K, ZHANG P X, BIAN R K, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm
|
[21] |
ZHANG T W, FU Q L, SUN X, et al. Meter-scale lithofacies cycle and controls on variations in oil saturation, Wolfcamp A, Delaware and Midland Basins[J]. AAPG Bulletin, 2021, 105(9): 1821-1846. doi: 10.1306/01152120065
|
[22] |
黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm
LI M W, JIN Z J, DONG M Z, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology&Experiment, 2020, 42(4): 489-505. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm
|
[23] |
柳波, 迟亚奥, 黄志龙, 等. 三塘湖盆地马朗凹陷二叠系油气运移机制与页岩油富集规律[J]. 石油与天然气地质, 2013, 34(6): 725-730. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306003.htm
LIU B, CHI Y A, HUANG Z L, et al. Migration mechanism of the Permian hydrocarbon and shale oil accumulation in Malang Sag, the Santanghu Basin[J]. Oil&Gas Geology, 2013, 34(6): 725-730. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306003.htm
|
[24] |
胡素云, 白斌, 陶士振, 等. 中国陆相中高成熟度页岩油非均质地质条件与差异富集特征[J]. 石油勘探与开发, 2022, 49(2): 224-237. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202020.htm
HU S Y, BAI B, TAO S Z, et al. Heterogeneous geological conditions and differential enrichment of medium and high maturity continental shale oil in China[J]. Petroleum Exploration and Development, 2022, 49(2): 224-237. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202020.htm
|
[25] |
周立宏, 陈长伟, 甘华军, 等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报, 2022, 41(5): 19-30. doi: 10.19509/j.cnki.dzkq.2022.0233
ZHOU L H, CHEN C W, GAN H J, et al. Shale formation environment and comprehensive evaluation of shale oil potential of the Lower First Member of Shahejie Formation in Qikou Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 19-30. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0233
|
[26] |
RAJI M, GRÖCKE D R, GREENWELL H C, et al. The effect of interbedding on shale reservoir properties[J]. Marine and Petroleum Geology, 2015, 67: 154-169. doi: 10.1016/j.marpetgeo.2015.04.015
|
[27] |
刘惠民, 李政, 包友书, 等. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202306006.htm
LIU H M, LI Z, BAO Y S, et al. Geology of shales in prolific shale-oil well BYP5 in the Jiyang Depression, Bohai Bay Basin[J]. Oil&Gas Geology, 2023, 44(6): 1405-1417. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202306006.htm
|
[28] |
胡涛, 姜福杰, 庞雄奇, 等. 页岩油微运移识别、评价及其石油地质意义[J]. 石油勘探与开发, 2024, 51(1): 114-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202401010.htm
HU T, JIANG F J, PANG X Q, et al. Identification and evaluation of shale oil micro-migration and its petroleum geological significance[J]. Petroleum Exploration and Development, 2024, 51(1): 114-126. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202401010.htm
|
[29] |
郭芪恒, 李士祥, 金振奎, 等. 鄂尔多斯盆地延长组长73亚段页岩油特征及勘探方向[J]. 石油勘探与开发, 2023, 50(4): 767-781. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202304009.htm
GUO Q H, LI S X, JIN Z K, et al. Characteristics and exploration targets of Chang 7 shale oil in Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(4): 767-781. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202304009.htm
|
[30] |
朱景修. 泥页岩不同介质中可溶有机质组成差异性及对页岩油富集的意义[J]. 石油实验地质, 2016, 38(4): 429-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604003.htm
ZHU J X. Composition difference of soluble organic matter in different media in mudstones and its significance for shale oil enrichment[J]. Petroleum Geology&Experiment, 2016, 38(4): 429-437. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604003.htm
|
[31] |
王鑫, 刘惠民, 张顺, 等. 济阳坳陷博兴洼陷页岩油微运移特征[J]. 地质论评, 2023, 69(增刊1): 270-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2023S1103.htm
WANG X, LIU H M, ZHANG S, et al. Micro-migration characteristics of shale oil in Boxing Subsag of Jiyang Depression[J]. Geological Review, 2023, 69(S1): 270-272. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2023S1103.htm
|
[32] |
ZOU C N, PAN S Q, HORSFIELD B, et al. Oil retention and intrasource migration in the organic-rich lacustrine Chang 7 shale of the Upper Triassic Yanchang Formation, Ordos Basin, central China[J]. AAPG Bulletin, 2019, 103(11): 2627-2663. doi: 10.1306/01301917052
|
[33] |
HAN Y J, MAHLSTEDT N, HORSFIELD B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion[J]. AAPG Bulletin, 2015, 99(12): 2173-2202. doi: 10.1306/06231514113
|
[34] |
HAN Y J, HORSFIELD B, MAHLSTEDT N, et al. Factors controlling source and reservoir characteristics in the Niobrara shale oil system, Denver Basin[J]. AAPG Bulletin, 2019, 103(9): 2045-2072. doi: 10.1306/0121191619717287
|
[35] |
LI M W, CHEN Z H, CAO T T, et al. Expelled oils and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. doi: 10.1016/j.coal.2018.03.001
|
[36] |
HACKLEY P C, ZHANG T W, JUBB A M, et al. Organic petrography of Leonardian (Wolfcamp A) mudrocks and carbonates, Midland Basin, Texas: The fate of oil-prone sedimentary organic matter in the oil window[J]. Marine and Petroleum Geology, 2020, 112: 104086. doi: 10.1016/j.marpetgeo.2019.104086
|
[37] |
GUO Q L, YAO Y, HOU L H, et al. Oil migration, retention, and differential accumulation in "sandwiched" lacustrine shale oil systems from the Chang 7 member of the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. International Journal of Coal Geology, 2022, 261: 104077. doi: 10.1016/j.coal.2022.104077
|
[38] |
YURCHENKO I A, MOLDOWAN J M, PETERS K E, et al. Source rock heterogeneity and migrated hydrocarbons in the Triassic Shublik Formation and their implication for unconventional resource evaluation in Arctic Alaska[J]. Marine and Petroleum Geology, 2018, 92: 932-952. doi: 10.1016/j.marpetgeo.2018.03.033
|
[39] |
GAO G, YANG S R, REN J L, et al. Geochemistry and depositional conditions of the carbonate-bearing lacustrine source rocks: A case study from the Early Permian Fengcheng Formation of Well FN7 in the northwestern Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2018, 162: 407-418. doi: 10.1016/j.petrol.2017.12.065
|
[40] |
HUNT J M. Petroleum geochemistry and geology[M]. 2nd Edition. New York: Freeman, 1988.
|
[41] |
HAN Y J, HORSFIELD B, WIRTH R, et al. Oil retention and porosity evolution in organic-rich shales[J]. AAPG Bulletin, 2017, 101(6): 807-827. doi: 10.1306/09221616069
|
[42] |
周杰, 庞雄奇. 一种生、排烃量计算方法探讨与应用[J]. 石油勘探与开发, 2002, 29(1): 24-27. doi: 10.3321/j.issn:1000-0747.2002.01.006
ZHOU J, PANG X Q. A method for calculating the quantity of hydrocarbon generation and expulsion[J]. Petroleum Exploration and Development, 2002, 29(1): 24-27. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0747.2002.01.006
|
[43] |
GAO G, ZHANG W W, XIANG B L, et al. Geochemistry characteristics and hydrocarbon-generating potential of lacustrine source rock in Lucaogou Formation of the Jimusaer Sag, Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2016, 145: 168-182. doi: 10.1016/j.petrol.2016.03.023
|
[44] |
LAFARGUE E, ESPITALIE J, JACOBSEN T, et al. Experimental simulation of hydrocarbon expulsion[J]. Organic Geochemistry, 1990, 16(1/3): 121-131.
|
[45] |
JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325.
|
[46] |
CHEN Y Y, LIN S H, BAI B, et al. Effects of petroleum retention and migration within the Triassic Chang 7 Member of the Ordos Basin, China[J]. International Journal of Coal Geology, 2020, 225: 103502. doi: 10.1016/j.coal.2020.103502
|
[47] |
PAN S Q, ZOU C N, LI J, et al. Unconventional shale systems: A comparative study of the "in-source sweet spot" developed in the lacustrine Chang 7 Shale and the marine Barnett Shale[J]. Marine and Petroleum Geology, 2019, 100: 540-550. doi: 10.1016/j.marpetgeo.2018.12.015
|
[48] |
代波, 李二党, 王小军, 等. 基于烃源岩地化参数评价页岩油运聚规律[J]. 油气藏评价与开发, 2021, 11(4): 506-513. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104005.htm
DAI B, LI E D, WANG X J, et al. Evaluation of shale oil migration and accumulation rules based on geochemical parameters of source rocks[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 506-513. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104005.htm
|
[49] |
ZHANG T W, SUN X, MILLIKEN K L, et al. Empirical relationship between gas composition and thermal maturity in Eagle Ford Shale, South Texas[J]. AAPG Bulletin, 2017, 101(8): 1277-1307. doi: 10.1306/09221615209
|
[50] |
赵靖舟, 孟选刚, 韩载华. 近源成藏: 来自鄂尔多斯盆地延长组湖盆东部"边缘"延长组6段原油的地球化学证据[J]. 石油学报, 2020, 41(12): 1513-1526. doi: 10.7623/syxb202012006
ZHAO J Z, MENG X G, HAN Z H. Near-source hydrocarbon accumulation: Geochemical evidence of lacustrine crude oil from the Member 6 of Yanchang Formation, eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2020, 41(12): 1513-1526. (in Chinese with English abstract) doi: 10.7623/syxb202012006
|
[51] |
KONG X X, JIANG Z X, HAN C, et al. Organic matter enrichment and hydrocarbon accumulation models of the marlstone in the Shulu Sag, Bohai Bay Basin, northern China[J]. International Journal of Coal Geology, 2020, 217: 103350. doi: 10.1016/j.coal.2019.103350
|
[52] |
HAN Y J, HORSFIELD B, CURRY D J. Control of facies, maturation and primary migration on biomarkers in the Barnett Shale sequence in the Marathon 1 Mesquite well, Texas[J]. Marine and Petroleum Geology, 2017, 85: 106-116. doi: 10.1016/j.marpetgeo.2017.04.018
|
[53] |
LUO Q Y, GEORGE S C, XU Y H, et al. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources[J]. Organic Geochemistry, 2016, 99: 23-37. doi: 10.1016/j.orggeochem.2016.05.004
|
[54] |
YUAN M, PAN S Q, JING Z H, et al. Geochemical distortion on shale oil maturity caused by oil migration: Insights from the non-hydrocarbons revealed by FT-ICR MS[J]. International Journal of Coal Geology, 2023, 266: 104142. doi: 10.1016/j.coal.2022.104142
|
[55] |
ESEME E, LITTKE R, KROOSS B M, et al. Experimental investigation of the compositional variation of petroleum during primary migration[J]. Organic Geochemistry, 2007, 38(8): 1373-1397. doi: 10.1016/j.orggeochem.2007.03.003
|
[56] |
LEYTHAEUSER D, RADKE M, WILLSCH H. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. Ⅱ: Molecular composition of alkylated naphthalenes, phenanthrenes, benzo-and dibenzothiophenes[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2879-2891. doi: 10.1016/0016-7037(88)90155-X
|
[57] |
HAN Y J, POETZ S, MAHLSTEDT N, et al. Fractionation and origin of NyOx and Ox compounds in the Barnett Shale sequence of the Marathon 1 Mesquite well, Texas[J]. Marine and Petroleum Geology, 2018, 97: 517-524. doi: 10.1016/j.marpetgeo.2018.07.031
|
[58] |
HAN Y J, POETZ S, MAHLSTEDT N, et al. Fractionation of pyrrolic nitrogen compounds compounds during primary migration of petroleum within the Barnett Shale sequence of Marathon 1 Mesquite well, Texas[J]. Energy&Fuels, 2018, 32(4): 4638-4650.
|
[59] |
YUE H W, VIETH-HILLEBRAND A, HAN Y J, et al. Unravelling the impact of lithofacies on the composition of NSO compounds in residual and expelled fluids of the Barnett, Niobrara and Posidonia formations[J]. Organic Geochemistry, 2021, 155: 104225. doi: 10.1016/j.orggeochem.2021.104225
|
[60] |
CLAYTON J L, BOSTICK N H. Temperature effects on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous dike[J]. Organic Geochemistry, 1986, 10(1/3): 135-143.
|
[61] |
HAN Y J, HORSFIELD B, MAHLSTEDT N, et al. Compositional fractionation of petroleum from reservoir to wellhead in the Niobrara shale oil play[J]. International Journal of Coal Geology, 2018, 198: 156-166. doi: 10.1016/j.coal.2018.09.006
|
[62] |
CHEN Z H, LI M W, CAO T T, et al. Hydrocarbon generation kinetics of a heterogeneous source rock system: Example from the lacsutrine Eocene-Oligocene Shahejie Formation, Bohai Bay Basin, China[J]. Energy&Fuels, 2017, 31(12): 13291-13304.
|
[63] |
马晓潇, 黎茂稳, 蒋启贵, 等. 陆相页岩含油性的化学动力学定量评价方法[J]. 油气地质与采收率, 2019, 26(1): 137-152. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901015.htm
MA X X, LI M W, JIANG Q G, et al. Chemical kinetic model for quantitative evaluation on oil-bearing property of lacustrine shale[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 137-152. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901015.htm
|
[64] |
柳波, 孙嘉慧, 张永清, 等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021, 48(3): 521-535. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103009.htm
LIU B, SUN J H, ZHANG Y Q, et al. Reservoir space and enrichment model of shale oil in the First Member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103009.htm
|
[65] |
GAO Z Y, DUAN L F, JIANG Z X, et al. Using laser scanning confocal microscopy combined with saturated oil experiment to investigate the pseudo in-situ occurrence mechanism of light and heavy components of shale oil in sub-micron scale[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111234. doi: 10.1016/j.petrol.2022.111234
|
[66] |
辛红刚, 田杨, 冯胜斌, 等. 鄂尔多斯盆地典型夹层型页岩油地质特征及潜力评价: 以宁228井长7段为例[J]. 地质科技通报, 2023, 42(3): 114-124. doi: 10.19509/j.cnki.dzkq.tb20220224
XIN H G, TIAN Y, FENG S B, et al. Geological characteristics and potential evaluation of typical interlayer shale oil in the Ordos Basin: A case study of the Chang 7 Member of Well Ning228[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 114-124. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220224
|
[67] |
JUBB A M, HACKLEY P C, HATCHERIAN J J, et al. Nanoscale molecular fractionation of organic matter within unconventional petroleum source beds[J]. Energy&Fuels, 2019, 33(10): 9759-9766.
|
[68] |
LI Q Q, CHEN F L, WU S Q, et al. A simple and effective evaluation method for lacustrine shale oil based on mass balance calculation of Rock-Eval data[J]. Applied Geochemistry, 2022, 140: 105287. doi: 10.1016/j.apgeochem.2022.105287
|
[69] |
HU T, LIU Y, JIANG F J, et al. A novel method for quantifying hydrocarbon micromigration in heterogeneous shale and the controlling mechanism[J]. Energy, 2024, 288: 129712. doi: 10.1016/j.energy.2023.129712
|