Volume 43 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
ZHAO Cui, QIN Hongliang, ZHU Yuhua, LUO Lin, HE Miaoling, LI Zhonghua. Hydrochemical analysis and pollution assessment of the Anjiang underground river system in central Guizhou[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 281-291. doi: 10.19509/j.cnki.dzkq.tb20240075
Citation: ZHAO Cui, QIN Hongliang, ZHU Yuhua, LUO Lin, HE Miaoling, LI Zhonghua. Hydrochemical analysis and pollution assessment of the Anjiang underground river system in central Guizhou[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 281-291. doi: 10.19509/j.cnki.dzkq.tb20240075

Hydrochemical analysis and pollution assessment of the Anjiang underground river system in central Guizhou

doi: 10.19509/j.cnki.dzkq.tb20240075
More Information
  • Objective

    This study aims to establish a scientific framework for managing pollution in the Anjiang underground river system in central Guizhou and maintaining the ecological integrity of the Wujiang River basin.

    Methods

    The approach involves comprehensive hydrogeological surveys and analytical testing of water samples. We analyze hydrogeological conditions, apply the Shukarev classification system, utilize Piper's trilinear diagrams, conduct normality and Grubbs' tests, and calculate pollution indices. This investigation methodically examines the hydrogeological context, hydrochemical profiles, sources of major ions, background concentrations, and current pollution levels, and identifies the factors driving pollution in the Anjiang underground river system.

    Results

    The Anjiang underground river system covers approximately 18.91 square kilometers. The hydrochemical composition is classified into four types: HCO3·SO4-Ca, HCO3-Ca·Mg, HCO3·SO4-Ca·Mg, and SO4-Ca, each constituting roughly equal proportions. The predominant ions mainly originate from the dissolution of carbonate rocks, specifically dolomite from the Loushanguan Formation and limestone from the Qixia Formation-Maokou Formation, as well as sulfur-bearing minerals from the Longtan Formation. The pollution levels are significant, with total phosphorus, fluoride, and sulfate being the most crucial contaminants. Notably, the limestone aquifer of the Qixia Formation-Maokou Formation has higher pollution level than the dolomite aquifer of the Loushanguan Formation. This study confirms that the karst conduit network in the Anjiang underground river system has developed primarily within the Qixia Formation-Maokou Formation, with substantial secondary development in the Loushanguan Formation. The groundwater, enriched with inorganic pollutants such as total phosphorus, fluoride, and sulfate ions, flows northeast through karst conduits, contaminating the Anjiang underground river system. This polluted water eventually discharges into the Wujiang River via the S50 underground river outlet.

    Conclusion

    Our findings provide crucial theoretical support for the management and mitigation of pollution in karstic underground river systems.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    袁道先, 薛禹群, 傅家谟, 等. 我西南岩溶地区地下河面临变成"下水道"威胁加强保护和污染治理需从国家层面尽快做出决策[J]. 科学新闻, 2007(14): 7-9.

    YUAN D X, XUE Y Q, FU J M, et al. Underground rivers in karst areas in Southwest China are facing the threat of becoming "sewers". To strengthen protection and pollution control, we need to make decisions at the national level as soon as possible[J]. Science News, 2007(14): 7-9. (in Chinese)
    [2]
    GUO F, YUAN D X, QIN Z J. Groundwater contamination in karst areas of southwestern China and recommended countermeasures[J]. Acta Carsologica, 2010, 39(2): 389-399.
    [3]
    张连凯, 杨慧. 岩溶地下河中砷迁移过程及其影响因素分析: 以广西南丹县里湖地下河为例[J]. 中国岩溶, 2013, 32(4): 377-383.

    ZHANG L K, YANG H. Transport process of arsenic in karst subterranean stream and analysis on the influence factors: A case in Lihu subterranean stream of Nandan County, Guangxi[J]. Carsologica Sinica, 2013, 32(4): 377-383. (in Chinese with English abstract)
    [4]
    WEN Y B, LI W, YANG Z F, et al. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, southwestern China[J]. Environmental Pollution, 2020, 258: 113645. doi: 10.1016/j.envpol.2019.113645
    [5]
    ZHOU C S, ZOU S Z, ZHU D N, et al. Pollution pattern of underground river in karst area of the Southwest China[J]. Journal of Groundwater Science and Engineering, 2018, 6(2): 71-83.
    [6]
    郭芳, 王文科, 姜光辉, 等. 岩溶地下河污染物运移特征及自净能力: 以广西里湖地下河为例[J]. 水科学进展, 2014, 25(3): 414-419.

    GUO F, WANG W K, JIANG G H, et al. Contaminant transport behavior in a karst subterranean river and its capacity of self-purification: A case study of Lihu, Guangxi[J]. Advances in Water Science, 2014, 25(3): 414-419. (in Chinese with English abstract)
    [7]
    任坤, 梁作兵, 于正良, 等. 重庆南山老龙洞地下河系统重金属分布、迁移及自净能力[J]. 环境科学, 2015, 36(11): 4095-4102.

    REN K, LIANG Z B, YU Z L, et al. Distribution and transportation characteristics of heavy metals in Nanshan Laolongdong subterranean river system and its capacity of self-purification in Chongqing[J]. Environmental Science, 2015, 36(11): 4095-4102. (in Chinese with English abstract)
    [8]
    LASAGNA M, DE LUCA D A, DEBERNARDI L, et al. Effect of the dilution process on the attenuation of contaminants in aquifers[J]. Environmental Earth Sciences, 2013, 70(6): 2767-2784.
    [9]
    LAMOUROUX C, HANI A. Identification of groundwater flow paths in complex aquifer systems[J]. Hydrological Processes, 2006, 20(14): 2971-2987.
    [10]
    董贵明, 王颖, 詹红兵, 等. 二维承压非稳定流水均衡区间的数值模拟[J]. 地质科技通报, 2023, 42(4): 75-82. doi: 10.19509/j.cnki.dzkq.tb20230028

    DONG G M, WANG Y, ZHAN H B, et al. Numerical simulation of the water budget interval for unsteady two-dimensional confined flow[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 75-82. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230028
    [11]
    邓恩德, 颜智华, 姜秉仁, 等. 黔西地区上二叠统龙潭组海陆交互相页岩气储层特征[J]. 石油实验地质, 2020, 42(3): 467-476.

    DENG E D, YAN Z H, JIANG B R, et al. Reservoir characteristics of marine-continental shale gas in Upper Permian Longtan Formation, western Guizhou Province[J]. Petroleum Geology & Experiment, 2020, 42(3): 467-476. (in Chinese with English abstract)
    [12]
    刘曾勤. 黔西地区龙潭组致密砂岩储层评价[D]. 北京: 中国地质大学(北京), 2020.

    LIU Z Q. Reservoir characterization of the marine-continental transitional tight sandstones in the Longtan Fomation, West Guizhou, China[D]. Beijing: China University of Geosciences(Beijing), 2020. (in Chinese with English abstract)
    [13]
    KARMEGAM U, CHIDAMBARAM S, PRASANNA M V, et al. A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model[J]. Chinese Journal of Geochemistry, 2011, 30(4): 490-495.
    [14]
    RUSSONIELLO C J, LAUTZ L K. Pay the PIED piper: Guidelines to visualize large geochemical datasets on piper diagrams[J]. Ground Water, 2020, 58(3): 464-469.
    [15]
    李泽威, 袁飞, 李明龙, 等. 水化学特征在恩施盆地地热资源调查中的指示意义[J]. 地质科技通报, 2023, 42(4): 83-94. doi: 10.19509/j.cnki.dzkq.tb20210791

    LI Z W, YUAN F, LI M L, et al. Indicative significance of hydrochemical characteristics in geothermal resource investigations in the Enshi Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 83-94. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210791
    [16]
    林华颖, 裴鹏, 邹行, 等. 贵州省毕节市米底河地热特征及形成机理[J]. 地质科技通报, 2023, 42(3): 281-288. doi: 10.19509/j.cnki.dzkq.tb20210675

    LIN H Y, PEI P, ZOU H, et al. Geothermal characteristics and formation mechanism of the Medi River in Bijie City, Guizhou Province[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 281-288. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210675
    [17]
    ZHU B Q, YANG X P, RIOUAL P, et al. Hydrogeochemistry of three watersheds(the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 2011, 26(8): 1535-1548.
    [18]
    XING L N, GUO H M, ZHAN Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 2013, 70: 250-264.
    [19]
    陈旺光, 曾成, 龚效宇, 等. 贵州深切峡谷区典型岩溶地下河水文水化学特征: 以贵州三塘地下河为例[J]. 水文地质工程地质, 2022, 49(4): 19-29.

    CHEN W G, ZENG C, GONG X Y, et al. Hydrological and hydrochemical regime of a typical subterraneous river in a deep canyon karst area: A case study in the Santang underground river, Guizhou[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 19-29. (in Chinese with English abstract)
    [20]
    中华人民共和国生态环境部土壤生态环境司. 地下水环境状况调查评价工作指南[S]. [出版地不详]: [出版者不详], 2019.

    Department of Soil Ecological Environment, Ministry of Ecology and Environment of the People's Republic of China. Guidelines for investigation and evaluation of groundwater environmental conditions(Trial)[S]. [S. l. ]: [s. n. ], 2019. (in Chinese)
    [21]
    郭高轩, 辛宝东, 刘文臣, 等. 我国地下水环境背景值研究综述[J]. 水文地质工程地质, 2010, 37(2): 95-98.

    GUO G X, XIN B D, LIU W C, et al. Review on the study of the environment background values of groundwater in China[J]. Hydrogeology & Engineering Geology, 2010, 37(2): 95-98. (in Chinese with English abstract)
    [22]
    RAVBAR N, GOLDSCHEIDER N. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment[J]. Hydrogeology Journal, 2009, 17(3): 725-733.
    [23]
    ANDERSON T W, DARLING D A. A test of goodness of fit[J]. Journal of the American Statistical Association, 1954, 49(268), 765-769.
    [24]
    HE D J, XU X Z, ZHAO J X. A new procedure for testing normality based on the L2 Wasserstein distance[J]. Journal of Systems Science and Complexity, 2013, 26(4): 572-582.
    [25]
    HE B H, TANG R, TAGN Q Y. Identifying the best common factor model via exploratory eactor analysis[J]. Applied Mathematics-A Journal of Chinese Universities, 2024, 39(1): 24-33.
    [26]
    中华人民共和国生态环境部土壤生态环境司. 地下水环境背景值统计表征技术指南(试行)[S]. [出版地不详]: [出版者不详], 2023.

    Department of Soil Ecological Environment, Ministry of Ecology and Environment of the People's Republic of China. Technical guide for statistical characterization of groundwater environmental background values(trial)[S]. [S. l. ]: [s. n. ], 2023. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(75) PDF Downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return