Volume 43 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
ZUO Shicheng, DONG Jie, LIAO Mingsheng. Time-series InSAR deformation gradient estimation and urban buildings risk assessment: A case study in the Beijing Plain[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 171-183. doi: 10.19509/j.cnki.dzkq.tb20240117
Citation: ZUO Shicheng, DONG Jie, LIAO Mingsheng. Time-series InSAR deformation gradient estimation and urban buildings risk assessment: A case study in the Beijing Plain[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 171-183. doi: 10.19509/j.cnki.dzkq.tb20240117

Time-series InSAR deformation gradient estimation and urban buildings risk assessment: A case study in the Beijing Plain

doi: 10.19509/j.cnki.dzkq.tb20240117
More Information
  • Author Bio:

    ZUO Shicheng, E-mail: a2409637129@163.com

  • Corresponding author: LIAO Mingsheng, E-mail: liao@whu.edu.cn
  • Received Date: 26 Mar 2024
  • Accepted Date: 01 Jul 2024
  • Rev Recd Date: 21 May 2024
  • Objective

    Differential deformation of urban land surfaces can threaten or damage surface infrastructure, leading to fractures and distortions. Monitoring spatial differential deformation and assessing associated risk levels are crucial for urban safety management.

    Methods

    This study employs Sentinel-1 satellite data and the time series InSAR techniques to analyze surface deformation over time, enabling the derivation of spatial-temporal deformation gradients. Hazard and vulnerability assessment factors are calculated using an analytic hierarchy process, integrating data such as nighttime light remote sensing, land use, and Chinese building height datasets.A macroscopic risk assessment is conducted, with supplementary microscopic-levelanalysis to assess building risks and identify potential high-risk areas. Comparison experiments verify the effectiveness of the research.

    Conclusion

    Significant deformation disparities are identified between the eastern Chaoyang District and the northwestern Tongzhou District. In addition, high-risk areas are observed around the Capital International Airport region and the vicinity of Anding South Street. Therefore, the study highlights the importance of multisource data for effectively monitoring differential deformation to ensureurban safe.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    胡喜梅, 马传明, 邓波, 等. 江苏省沿海地区地面沉降风险评价[J]. 地质科技情报, 2017, 36(2): 222-228.

    HU X M, MA C M, DENG B, et al. Risk evaluation of land subsidence in coastal areas of Jiangsu Province[J]. Geological Science and Technology Information, 2017, 36(2): 222-228. (in Chinese with English abstract)
    [2]
    魏以宽, 闵天, 邹崇尧, 等. 基于InSAR的武汉地区2016-2021年地面沉降监测[J]. 地理空间信息, 2023, 21(10): 69-72. doi: 10.3969/j.issn.1672-4623.2023.10.017

    WEI Y K, MIN T, ZOU C Y, et al. Land subsidence monitoring in Wuhan from 2016 to 2021 based on InSAR[J]. Geospatial Information, 2023, 21(10): 69-72. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-4623.2023.10.017
    [3]
    ZHAO F M, GONG W P, TANG H M, et al. An integrated approach for risk assessment of land subsidence in Xi'an, China using optical and radar satellite images[J]. Engineering Geology, 2023, 314: 106983. doi: 10.1016/j.enggeo.2022.106983
    [4]
    WANG Z Y, BALZ T, ZHANG L, et al. Using TSX/TDX pursuit monostatic SAR stacks for PS-InSAR analysis in urban areas[J]. Remote Sensing, 2018, 11(1): 26. doi: 10.3390/rs11010026
    [5]
    王腾, 廖明生. Sentinel-1卫星数据提取同震形变场: 最新技术及震例[J]. 遥感学报, 2018, 22(增刊1): 120-127.

    WANG T, LIAO M S. Coseismic displacement derived from Sentinel-1 data: Latest techniques and case studies[J]. Journal of Remote Sensing, 2018, 22(S1): 120-127. (in Chinese with English abstract)
    [6]
    蔡杰华, 张路, 董杰, 等. 九寨沟震后滑坡隐患雷达遥感早期识别与形变监测[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1707-1716.

    CAI J H, ZHANG L, DONG J, et al. Detection and monitoring of post-earthquake landslides in Jiuzhaigou using radar remote sensing[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1707-1716. (in Chinese with English abstract)
    [7]
    李思慧, 董杰, 张路, 等. 时序InSAR对流层大气延迟改正的相位堆叠方法[J]. 遥感学报, 2023, 27(10): 2406-2417.

    LI S H, DONG J, ZHANG L, et al. Time-series InSAR tropospheric atmospheric delay correction based on common scene stacking[J]. National Remote Sensing Bulletin, 2023, 27(10): 2406-2417. (in Chinese with English abstract)
    [8]
    DONG J, GUO S K, WANG N, et al. Tri-decadal evolution of land subsidence in the Beijing Plain revealed by multi-epoch satellite InSAR observations[J]. Remote Sensing of Environment, 2023, 286: 113446. doi: 10.1016/j.rse.2022.113446
    [9]
    CIGNA F, CABRAL-CANO E, OSMANOĈLU B, et al. Detecting subsidence-induced faulting in Mexican urban areas by means of Persistent Scatterer Interferometry and subsidence horizontal gradient mapping[C]//Anon. 2011 IEEE International Geoscience and Remote Sensing Symposium. [S. l.]: IEEE, 2011: 2125-2128.
    [10]
    秦欢欢. 北京平原地面沉降数值模拟情景分析[J]. 地质科技情报, 2019, 38(1): 221-227.

    QIN H H. Numerical simulation and scenario analysis of land subsidence in Beijing Plain[J]. Geological Science and Technology Information, 2019, 38(1): 221-227. (in Chinese with English abstract)
    [11]
    ERTEN H, BOSTANCI E, ACICI K, et al. Semantic segmentation with high-resolution Sentinel-1 SAR data[J]. Applied Sciences, 2023, 13(10): 6025. doi: 10.3390/app13106025
    [12]
    仵倩玉, 王密, 陈俊博. 语义描述驱动的启明星一号自主任务规划方法[J]. 武汉大学学报(信息科学版), 2023, 48(8): 1264-1272.

    WU Q Y, WANG M, CHEN J B. Semantic description driven autonomous mission planning method for QMX-1[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1264-1272. (in Chinese with English abstract)
    [13]
    王妤, 孙斌栋. 城市规模分布对地区收入差距的影响: 基于LandScan全球人口数据库的实证研究[J]. 城市发展研究, 2021, 28(6): 25-32.

    WANG S, SUN B D. The effect of city size distribution on regional income disparities: An empirical research based on LandScan population database[J]. Urban Development Studies, 2021, 28(6): 25-32. (in Chinese with English abstract)
    [14]
    ZHAO N Z, LIU Y, CAO G F, et al. Forecasting China's GDP at the pixel level using nighttime lights time series and population images[J]. GIScience & Remote Sensing, 2017, 54(3): 407-425.
    [15]
    WU W B, MA J, BANZHAF E, et al. A first Chinese building height estimate at 10 m resolution(CNBH-10 m)using multi-source earth observations and machine learning[J]. Remote Sensing of Environment, 2023, 291: 113578. doi: 10.1016/j.rse.2023.113578
    [16]
    GONG P, CHEN B, LI X C, et al. Mapping essential urban land use categories in China(EULUC-China): Preliminary results for 2018[J]. Science Bulletin, 2020, 65(3): 182-187. doi: 10.1016/j.scib.2019.12.007
    [17]
    YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925. doi: 10.5194/essd-13-3907-2021
    [18]
    KARRA K, KONTGIS C, STATMAN-WEIL Z, et al. Global land use/land cover with Sentinel 2 and deep learning[C]//Anon. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. [S. l.]: IEEE, 2021: 4704-4707.
    [19]
    WEGNVLLER U, WERNER C, STROZZI T, et al. Sentinel-1 support in the GAMMA Software[C]//Anon. International Conference on ENTERprise Information Systems/International Conference on Project MANagement/International Conference on Health and Social Care Information Systems and Technologies(CENTERIS/ProjMAN/HCist). [S. l.]: Elsevier B.V., 2016, 100: 1305-1312.
    [20]
    HAWKER L, UHE P, PAULO L, et al. A 30 m global map of elevation with forests and buildings removed[J]. Environmental Research Letters, 2022, 17(2): 024016. doi: 10.1088/1748-9326/ac4d4f
    [21]
    TANG W, MOTAGH M, ZHAN W. Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 93: 102217. doi: 10.1016/j.jag.2020.102217
    [22]
    尹勇, 史先琳, 钟佳宏, 等. 联合升降轨Sentinel-1A监测攀枝花机场高边坡二维形变[J]. 测绘与空间地理信息, 2023, 46(12): 45-48.

    YIN Y, SHI X L, ZHONG J H, et al. Monitoring 2D deformation of high slope in Panzhihua airport by joint lifting rail Sentinel-1A[J]. Geomatics & Spatial Information Technology, 2023, 46(12): 45-48. (in Chinese with English abstract)
    [23]
    CABRAL-CANO E, DIXON T H, MIRALLES-WILHELM F, et al. Space geodetic imaging of rapid ground subsidence in Mexico City[J]. Geological Society of America Bulletin, 2008, 120(11/12): 1556-1566.
    [24]
    CIGNA F, TAPETE D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico[J]. Remote Sensing of Environment, 2021, 254: 112254. doi: 10.1016/j.rse.2020.112254
    [25]
    FU L, ZHANG Q, WANG T, et al. Detecting slow-moving landslides using InSAR phase-gradient stacking and deep-learning network[J]. Frontiers in Environmental Science, 2022, 10: 963322. doi: 10.3389/fenvs.2022.963322
    [26]
    李德仁, 李熙. 论夜光遥感数据挖掘[J]. 测绘学报, 2015, 44(6): 591-601.

    LI D R, LI X. An overview on data mining of nighttime light remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 591-601. (in Chinese with English abstract)
    [27]
    SHI P J, SHUAI J B, CHEN W F, et al. Study on large-scale disaster risk assessment and risk transfer models[J]. International Journal of Disaster Risk Science, 2010, 1(2): 1-8.
    [28]
    TURNER B L 2nd, KASPERSON R E, MATSON P A, et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8074-8079.
    [29]
    CUTTER S L, BARNES L, BERRY M, et al. A place-based model for understanding community resilience to natural disasters[J]. Global Environmental Change, 2008, 18(4): 598-606. doi: 10.1016/j.gloenvcha.2008.07.013
    [30]
    BIRKMANN J, CARDONA O D, CARREÑO M L, et al. Framing vulnerability, risk and societal responses: The MOVE framework[J]. Natural Hazards, 2013, 67(2): 193-211. doi: 10.1007/s11069-013-0558-5
    [31]
    周姝天, 翟国方, 施益军, 等. 城市自然灾害风险评估研究综述[J]. 灾害学, 2020, 35(4): 180-186.

    ZHOU S T, ZHAI G F, SHI Y J, et al. A literature review of urban natural disaster risk assessment[J]. Journal of Catastrophology, 2020, 35(4): 180-186. (in Chinese with English abstract)
    [32]
    ZHANG Z H, ZHANG S B, HU C T, et al. Hazard assessment model of ground subsidence coupling AHP, RS and GIS: A case study of Shanghai[J]. Gondwana Research, 2023, 117: 344-362. doi: 10.1016/j.gr.2023.01.014
    [33]
    赵帆, 方世跃, 祁欣海, 等. 基于ANP与ArcGIS的城市火灾风险评估[J]. 科学技术与工程, 2023, 23(3): 1308-1318.

    ZHAO F, FANG S Y, QI X H, et al. Urban fire risk assessment based on ANP and ArcGIS[J]. Science Technology and Engineering, 2023, 23(3): 1308-1318. (in Chinese with English abstract)
    [34]
    CIRO AUCELLI P P, DI PAOLA G, INCONTRI P, et al. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain(Volturno coastal plain-southern Italy)[J]. Estuarine, Coastal and Shelf Science, 2017, 198: 597-609.
    [35]
    CATANI F, CASAGLI N, ERMINI L, et al. Landslide hazard and risk mapping at catchment scale in the Arno River basin[J]. Landslides, 2005, 2(4): 329-342.
    [36]
    VARNES D J. Landslide hazard zonation: A review of principles and practice[M]. Paris: United Nations Educational, Scientific and Cultural Organization, 1984.
    [37]
    李玉梅, 罗勇, 赵龙. 北京市平原区地面沉降研究进展与思考[J]. 灾害学, 2023, 38(4): 121-126.

    LI Y M, LUO Y, ZHAO L. The advance and considerations on land subsidence in Beijing Plain[J]. Journal of Catastrophology, 2023, 38(4): 121-126. (in Chinese with English abstract)
    [38]
    张熔鑫, 邢会林, 舒涛, 等. 中国地震科学实验场断层系统的三维计算网格模型[J]. 地震, 2023, 43(3): 18-33.

    ZHANG R X, XING H L, SHU T, et al. 3D mesh for the fault system in China seismic experimental site[J]. Earthquake, 2023, 43(3): 18-33. (in Chinese with English abstract)
    [39]
    LIU Z P, TANG H, FENG L, et al. China building rooftop area: The first multi-annual(2016-2021) and high-resolution(2.5 m) building rooftop area dataset in China derived with super-resolution segmentation from Sentinel-2 imagery[J]. Earth System Science Data, 2023, 15(8): 3547-3572.
    [40]
    CIGNA F, TAPETE D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014-2020 Sentinel-1 IW InSAR[J]. Remote Sensing of Environment, 2021, 253: 112161.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(45) PDF Downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return