Volume 43 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
LI Hongjie, CHANG Ming, TANG Liangliang, WANG Gaofneg, LI Linze, XIA Zhe, ZHU Xisong, NI Zhang. Potential chain disaster evolution process of debris flow blockage and dam failure floods in the Bailong River basin[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 196-211. doi: 10.19509/j.cnki.dzkq.tb20240168
Citation: LI Hongjie, CHANG Ming, TANG Liangliang, WANG Gaofneg, LI Linze, XIA Zhe, ZHU Xisong, NI Zhang. Potential chain disaster evolution process of debris flow blockage and dam failure floods in the Bailong River basin[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 196-211. doi: 10.19509/j.cnki.dzkq.tb20240168

Potential chain disaster evolution process of debris flow blockage and dam failure floods in the Bailong River basin

doi: 10.19509/j.cnki.dzkq.tb20240168
  • Received Date: 18 Apr 2024
  • Accepted Date: 17 Jul 2024
  • Rev Recd Date: 02 Jul 2024
  • Objective

    In the aftermath of the "5.12" Wenchuan earthquake, the frequency of chain disasters, precipitated by debris flow blockages and subsequent breaching floods, significantly increased in the Bailong River basin. The region's distinctive geological conditions, characterized by numerous towns situated on canyon terraces and debris flow accumulation fans, further exacerbate its susceptibility to such chain disasters. This study aims to investigate the potential risks associated with debris flow blockages and flood chain disasters in the Bailong River basin, with a specific focus on the Zhaizi gully debris flow in Bailong River basin, Zhouqu County, Gansu Province. The objective is to elucidate the disaster-breeding characteristics, disaster-inducing conditions, and evolution patterns of the Zhaizi gully debris flow chain disaster, while also delineating the threat range posed by these chain disasters.

    Methods

    Through remote sensing interpretation and field surveys, a comprehensive database encompassing the topography, geomorphology, and material sources of the Zhaizi gully debris flow was established. This facilitated the identification of the development characteristics and various physical and mechanical parameters of the debris flow. Using the FLO-2D and HEC-RAS models, numerical simulations were performed under different rainfall frequencies (P=1%, 2%), yielding key parameters such as depth, flow velocity, and the threat range of the debris flow and breaching floods. These parameters facilitated the analysis of hazard intensity and potential risks associated with debris flows and breaching floods.

    Results

    Under a 100-year rainfall frequency, the maximum flow velocity of the Zhaizi gully debris flow can reach 11.96 m/s. The average thickness of the debris dam formed is approximately 10 m, leading to complete blockage of the Bailong River and the formation of a dammed lake with a capacity of 6.26 km3. The evolution of the breaching flood lasts approximately 12 hours, with the peak flow occurring about 30 minutes after breach. The impact range of the breaching flood extends from the downstream area of Fengdie Town in Zhouqu County, Gannan, along the main stream of the Bailong River, to the upstream section of Jigan Township in Wudu District, Longnan City, covering an area of 56.36 km2 and spanning a distance of approximately 97.4 km. Based on the simulation results, a preliminary discussion was conducted on a comprehensive risk prevention and control model for basin-wide debris flow disaster chains, integrating monitoring and mitigation measures.

    Conclusion

    This study highlights the limitations of traditional models in flood disaster assessment and enhances the understanding of cascading hazards induced by debris flow blockages. The findings provide valuable insights for the risk assessment and engineering design of mitigation projects for similar debris flow disaster chains in the middle and lower reaches of the Bailong River basin.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    王高峰, 李浩, 田运涛, 等. 甘肃省白龙江流域典型高位堆积层滑坡成因机制研究及其危险性预测[J]. 岩石力学与工程学报, 2023, 42(4): 1003-1018.

    WANG G F, LI H, TIAN Y T, et al. Study on the formation mechanism and risk prediction of high-level accumulation landslides in Bailongjiang River basin, Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(4): 1003-1018. (in Chinese with English abstract)
    [2]
    孟兴民, 陈冠, 郭鹏, 等. 白龙江流域滑坡泥石流灾害研究进展与展望[J]. 海洋地质与第四纪地质, 2013, 33(4): 1-15.

    MENG X M, CHEN G, GUO P, et al. Research of landslides and debris flows in Bailong River basin: Progrss and prospect[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 1-15. (in Chinese with English abstract)
    [3]
    XIONG J, TANG C, GONG L F, et al. How landslide sediments are transferred out of an alpine basin: Evidence from the epicentre of the Wenchuan earthquake[J]. CATENA, 2022, 208: 105781.
    [4]
    CAO Z X, PENDER G, WALLIS S, et al. Computational dam-break hydraulics over erodible sediment bed[J]. Journal of Hydraulic Engineering, 2004, 130(7): 689-703.
    [5]
    杨强, 王高峰, 李金柱, 等. 白龙江中上游泥石流形成条件与成灾模式探讨[J]. 中国地质灾害与防治学报, 2022, 33(6): 70-79.

    YANG Q, WANG G F, LI J Z, et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River basin[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 70-79. (in Chinese with English abstract)
    [6]
    WANG L, CHANG M, LE J, et al. Two multi-temporal datasets to track debris flow after the 2008 Wenchuan earthquake[J]. Scientific Data, 2022, 9(1): 525. doi: 10.1038/s41597-022-01658-y
    [7]
    赵成, 王根龙, 胡向德, 等. "8.8" 舟曲暴雨泥石流的成灾模式[J]. 西北地质, 2011, 44(3): 63-70.

    ZHAO C, WANG G L, HU X D, et al. The disaster mode of rainstorm debris flow happened in Zhouqu County on August 8, 2010[J]. Northwestern Geology, 2011, 44(3): 63-70. (in Chinese with English abstract)
    [8]
    庞海松, 谢骏锦, 张小明, 等. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153

    PANG H S, XIE J J, ZHANG X M, et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215-225. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230153
    [9]
    曾鹏, 王宇豪, 张天龙, 等. 基于NSGA-Ⅱ遗传算法的黄土滑坡参数反分析与稳定性预测[J]. 地球科学, 2023, 48(5): 1675-1685.

    ZENG P, WANG Y H, ZHANG T L, et al. Parameter back analysis and stability prediction of loess landslide based on NSGA-Ⅱ genetic algorithm[J]. Earth Science, 2023, 48(5): 1675-1685. (in Chinese with English abstract)
    [10]
    TAN D Y, FENG W Q, YIN J H, et al. Numerical study of retention efficiency of a flexible barrier in mitigating granular flow comparing with large-scale physical modeling test data[J]. Acta Geotechnica, 2021, 16(2): 433-448. doi: 10.1007/s11440-020-01036-1
    [11]
    赵玉, 陈丽霞, 梁梦姣. 基于LSTM_TCN模型的降雨型滑坡时间概率预测及气象预警建模[J]. 地质科技通报, 2024, 43(2): 201-214. doi: 10.19509/j.cnki.dzkq.tb20220657

    ZHAO Y, CHEN L X, LIANG M J. Temporal probability prediction and meteorological early warning modeling of rainfall-induced landslide based on LSTM_TCN model[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 201-214. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220657
    [12]
    李林泽, 常鸣, 李宏杰, 等. "9·5" 泸定震后落井沟泥石流灾变过程预测分析[J]. 地震工程学报, 2023, 45(5): 1116-1124.

    LI L Z, CHANG M, LI H J, et al. Prediction of the catastrophe process of the debris flow in Luojing gully after the "9·5" Luding earthquake[J]. China Earthquake Engineering Journal, 2023, 45(5): 1116-1124. (in Chinese with English abstract)
    [13]
    刘世康, 范宣梅, 王文松, 等. 降雨模式对震后泥石流起动模式影响的试验研究: 以九寨天堂沟为例[J]. 地质科技通报, 2022, 41(6): 278-286. doi: 10.19509/j.cnki.dzkq.2022.0214

    LIU S K, FAN X M, WANG W S, et al. Experimental study on the effect of rainfall patterns on the failure mode of debris flows after earthquakes: A case study of Tiantanggou, Jiuzhai[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 278-286. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0214
    [14]
    TAN D Y, YIN J H, QIN J Q, et al. Experimental study on impact and deposition behaviours of multiple surges of channelized debris flow on a flexible barrier[J]. Landslides, 2020, 17(7): 1577-1589. doi: 10.1007/s10346-020-01378-7
    [15]
    陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266. doi: 10.19509/j.cnki.dzkq.tb20220235

    CHEN L, FAN X M, XIONG J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220235
    [16]
    OUYANG C J, HE S M, TANG C. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area[J]. Engineering Geology, 2015, 194: 62-72. doi: 10.1016/j.enggeo.2014.07.012
    [17]
    CHEN M, TANG C, ZHANG X Z, et al. Quantitative assessment of physical fragility of buildings to the debris flow on 20 August 2019 in the Cutou gully, Wenchuan, southwestern China[J]. Engineering Geology, 2021, 293: 106319. doi: 10.1016/j.enggeo.2021.106319
    [18]
    HVRLIMANN M, COPONS R, ALTIMIR J. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach[J]. Geomorphology, 2006, 78(3/4): 359-372.
    [19]
    CHANG M, TANG C, VAN ASCH T W J, et al. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China[J]. Landslides, 2017, 14(5): 1783-1792. doi: 10.1007/s10346-017-0824-9
    [20]
    ZHANG X Z, TANG C X, YU Y J, et al. Some considerations for using numerical methods to simulate possible debris flows: The case of the 2013 and 2020 Wayao debris flows(Sichuan, China)[J]. Water, 2022, 14(7): 1050. doi: 10.3390/w14071050
    [21]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国地震动参数区划图: GB18306-2015[S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. China Earthquake Administration Seismic ground motion parameters zonation map of China: GB18306-2015[S]. Beijing: Standards Press of China, 2015. (in Chinese)
    [22]
    乔建平, 黄栋, 杨宗佶, 等. 汶川地震极震区泥石流物源动储量统计方法讨论[J]. 中国地质灾害与防治学报, 2012, 23(2): 1-6.

    QIAO J P, HUANG D, YANG Z J, et al. Statistical method on dynamic reserve of debris flow's source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(2): 1-6. (in Chinese with English abstract)
    [23]
    朱武, 杨璐瑶, 张金敏, 等. 联合InSAR和质量守恒法估计西藏贡觉地区雄巴滑坡厚度[J]. 地球科学与环境学报, 2023, 45(3): 535-547.

    ZHU W, YANG L Y, ZHANG J M, et al. Thickness estimation of Xiongba landslide in Gongjue area of Tibet, China by combining InSAR and mass conservation method[J]. Journal of Earth Sciences and Environment, 2023, 45(3): 535-547. (in Chinese with English abstract)
    [24]
    王高峰, 高幼龙, 姚亚辉, 等. 甘肃省白龙江流域降雨型潜在泥石流危险性预报模型[J]. 中国地质, 2022, 49(3): 732-748.

    WANG G F, GAO Y L, YAO Y H, et al. Prediction model of potential debris flow hazard of rainfall type in Bailong River basin, Gansu Province[J]. Geology in China, 2022, 49(3): 732-748. (in Chinese with English abstract)
    [25]
    毛佳睿, 武雄, 王高峰. 甘肃省甘家沟泥石流特征分析与防治建议[J]. 昆明理工大学学报(自然科学版), 2020, 45(6): 51-59.

    MAO J R, WU X, WANG G F. Characteristic analysis and prevention suggestions of debris flow in Ganjiagou of Gansu Province[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2020, 45(6): 51-59. (in Chinese with English abstract)
    [26]
    罗玉婷, 王立娟, 马松, 等. 强震区泥石流堵江-洪水灾害链式过程模拟研究: 以汶川县下庄沟为例[J]. 人民珠江, 2023, 44(4): 63-70.

    LUO Y T, WANG L J, MA S, et al. Modelling of chain process of debris flow blocking river and induced flood disaster in meizoseismal area: A case of Xiazhuang gully in Wenchuan County[J]. Pearl River, 2023, 44(4): 63-70(in Chinese with English abstract)
    [27]
    YU B, MA Y, WU Y F. Case study of a giant debris flow in the Wenjia gully, Sichuan Province, China[J]. Natural Hazards, 2013, 65(1): 835-849. doi: 10.1007/s11069-012-0395-y
    [28]
    中国地质灾害防治工程行业协会. 泥石流灾害防治工程勘查规范(试行): T/CAGHP 006-2018[S]. 武汉: 中国地质大学出版社, 2018.

    China Association of Geological Hazard Prevention. Specification of Geological Investigation for Debris Flow Stabilization: T/CAGHP 006-2018[S]. Wuhan: China University of Geosciences Press, 2018. (in Chinese)
    [29]
    BRIEN J S. FLO-2D Reference Manual[M]. [S. l. ]: [s. n. ], 2009.
    [30]
    詹钱登, 余昌益, 吴云瑞. 含砂浓度对含砂水流流变参数的影响之初步研究[C]//佚名. 第一届泥石流研讨会论文集. [出版地不详]: [出版者不详], 1997: 179-190.

    ZHAN Q D, YU Y C, WU Y D. Preliminary study on the effect of sand concentration on the rheological parameters of sandy water flow[C]//Anon. Proceedings of the First Symposium on Debris Flow. [S. l. ]: [s. n. ], 1997: 179-190. (in Chinese with English abstract)
    [31]
    张建新, 程琳, 王光谦, 等. 堰塞湖最大库容及库容曲线分析计算[J]. 水文, 2009, 29(5): 63-66.

    ZHANG J X, CHENG L, WANG G Q, et al. Analysis and calculation of maximum reservoir storage and reservoir storage curve of barrier lakes[J]. Journal of China Hydrology, 2009, 29(5): 63-66. (in Chinese with English abstract)
    [32]
    张小琴, 包为民, 梁文清, 等. 河道糙率问题研究进展[J]. 水力发电, 2008(6): 98-100.

    ZHANG X Q, BAO W M, LIANG W Q, et al. Research progress on river channel roughness issues[J]. Journal of Hydroelectric Engineering, 2008(6): 98-100. (in Chinese with English abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(26) PDF Downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return