Citation: | ZENG Peng, ZHANG Zhiqiang, LI Tianbin, Tang Hao, YAN Zulong, MENG Lubo. Dynamic selection of optimal tunnel convergence prediction model for a probabilistic deformation prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 15-25. doi: 10.19509/j.cnki.dzkq.tb20240187 |
In high geostress or complex geological conditions, tunnel convergence frequently exceeds the threshold, resulting in damage to support structures and, in extreme cases, tunnel collapse. Accurately predicting the deformation trend and convergence of surrounding rock during tunnel construction is crucial to ensuring the safety of workers and improving construction efficiency. Traditional single prediction models struggle to adapt to the dynamic nature of tunnel convergence, limiting their predictive accuracy.
To address this, this study introduces a dynamic prediction model for tunnel convergence based on continuous Bayesian updating and an optimal model selection strategy. Utilizing real-time monitoring data of tunnel convergence deformation, the parameters in three empirical models are continuously updated and refined. The optimal model is then selected to predict the final convergence deformation of the surrounding rock and quantify its associated uncertainty.
The model was tested on 16 measurement points across 9 sections of the Baima Tunnel, achieving a mean relative error of only 3.22% between the predicted and monitored final convergence rates.
Additionally, with just 10 days of observed data, the model can forecast the final convergence deformation for up to 40 days post-excavation, offering valuable technical support for preventing squeezing disasters in the full-section tunnel excavation.
[1] |
GUAN Z C, JIANG Y J, TANABASHI Y, et al. A new rheological model and its application in mountain tunnelling[J]. Tunnelling and Underground Space Technology, 2008, 23(3): 292-299. doi: 10.1016/j.tust.2007.06.003
|
[2] |
徐啸川, 徐光黎, 林高炜, 等. 小尺寸模型在五峰隧道涌突水判别中的应用[J]. 地质科技通报, 2023, 42(6): 42-52. doi: 10.19509/j.cnki.dzkq.2022.0149
XU X C, XU G L, LIN G W, et al. Application of a small-scale model test in distinguishing of water inrush in the Wufeng Tunnel[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 42-52. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0149
|
[3] |
徐啸川, 徐光黎, 魏文豪, 等. 示踪实验在湾潭隧道涌水突泥判别中的应用[J]. 地质科技通报, 2023, 42(2): 297-304. doi: 10.19509/j.cnki.dzkq.2022.0141
XU X C, XU G L, WEI W H, et al. Application of a tracing experiment in the prediction of water and mud inrush in the Wantan Tunnel[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 297-304. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0141
|
[4] |
侯守江. 基于多元算法融合的软岩隧道围岩变形预测模型及应用研究[J]. 现代隧道技术, 2023, 60(6): 151-164.
HOU S J. Study on the prediction model of surrounding rock deformation in soft rock tunnel based on multivariate algorithm fusion and its application[J]. Modern Tunnelling Technology, 2023, 60(6): 151-164. (in Chinese with English abstract)
|
[5] |
NOMIKOS P, RAHMANNEJAD R, SOFIANOS A. Supported axisymmetric tunnels within linear viscoelastic Burgers rocks[J]. Rock Mechanics and Rock Engineering, 2011, 44(5): 553-564. doi: 10.1007/s00603-011-0159-0
|
[6] |
DEBERNARDI D, BARLA G. New viscoplastic model for design analysis of tunnels in squeezing conditions[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 259-288. doi: 10.1007/s00603-009-0174-6
|
[7] |
朱维申, 孙爱花, 王文涛, 等. 大型洞室群高边墙位移预测和围岩稳定性判别方法[J]. 岩石力学与工程学报, 2007, 26(9): 1729-1736.
ZHU W S, SUN A H, WANG W T, et al. Study on prediction of high wall displacement and stability judging method of surrounding rock for large cavern groups[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1729-1736. (in Chinese with English abstract)
|
[8] |
PELLET F, ROOSEFID M, DELERUYELLE F. On the 3D numerical modelling of the time-dependent development of the damage zone around underground galleries during and after excavation[J]. Tunnelling and Underground Space Technology, 2009, 24(6): 665-674. doi: 10.1016/j.tust.2009.07.002
|
[9] |
NADIMI S, SHAHRIAR K, SHARIFZADEH M, et al. Triaxial creep tests and back analysis of time-dependent behavior of Siah Bisheh cavern by 3-dimensional distinct element method[J]. Tunnelling and Underground Space Technology, 2011, 26(1): 155-162. doi: 10.1016/j.tust.2010.09.002
|
[10] |
SHARIFZADEH M, TARIFARD A, ALI MORIDI M. Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method[J]. Tunnelling and Underground Space Technology, 2013, 38: 348-356. doi: 10.1016/j.tust.2013.07.014
|
[11] |
STERPI D, GIODA G. Visco-plastic behaviour around advancing tunnels in squeezing rock[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 319-339. doi: 10.1007/s00603-007-0137-8
|
[12] |
GUAN Z C, JIANG Y J, TANABASHI Y. Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling[J]. Tunnelling and Underground Space Technology, 2009, 24(3): 250-259. doi: 10.1016/j.tust.2008.08.001
|
[13] |
JIMENEZ R, RECIO D. A linear classifier for probabilistic prediction of squeezing conditions in Himalayan tunnels[J]. Engineering Geology, 2011, 121(3/4): 101-109.
|
[14] |
SULEM J, PANET M, GUENOT A. Closure analysis in deep tunnels[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(3): 145-154.
|
[15] |
KONTOGIANNI V, PSIMOULIS P, STIROS S. What is the contribution of time-dependent deformation in tunnel convergence?[J]. Engineering Geology, 2006, 82(4): 264-267. doi: 10.1016/j.enggeo.2005.11.001
|
[16] |
GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, MENÉNDEZ-DÍAZ A, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology, 2008, 23(1): 25-37. doi: 10.1016/j.tust.2006.12.001
|
[17] |
ASADOLLAHPOUR E, RAHMANNEJAD R, ASGHARI A, et al. Back analysis of closure parameters of Panet equation and Burger's model of Babolak water tunnel conveyance[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 159-166. doi: 10.1016/j.ijrmms.2014.02.017
|
[18] |
杨红军, 夏才初, 彭裕闻, 等. 时空效应下隧道的收敛变形预测及二衬合理支护时机[J]. 公路, 2010, 55(4): 218-223.
YANG H J, XIA C C, PENG Y W, et al. Prediction of convergence deformation of tunnel under spatio-temporal effect and reasonable support timing of secondary lining[J]. Highway, 2010, 55(4): 218-223. (in Chinese with English abstract)
|
[19] |
FENG X D, JIMENEZ R, ZENG P, et al. Prediction of time-dependent tunnel convergences using a Bayesian updating approach[J]. Tunnelling and Underground Space Technology, 2019, 94: 103118. doi: 10.1016/j.tust.2019.103118
|
[20] |
JUANG C H, GONG W P, MARTIN J R, et al. Model selection in geological and geotechnical engineering in the face of uncertainty: Does a complex model always outperform a simple model?[J]. Engineering Geology, 2018, 242: 184-196. doi: 10.1016/j.enggeo.2018.05.022
|
[21] |
张传庆, 冯夏庭, 周辉, 等. 隧洞围岩收敛损失位移的求取方法及应用[J]. 岩土力学, 2009, 30(4): 997-1003.
ZHANG C Q, FENG X T, ZHOU H, et al. Method of obtaining loss convergence displacement and its application to tunnel engineering[J]. Rock and Soil Mechanics, 2009, 30(4): 997-1003. (in Chinese with English abstract)
|
[22] |
VU T M, SULEM J, SUBRIN D, et al. Anisotropic closure in squeezing rocks: The example of Saint-Martin-la-Porte access gallery[J]. Rock Mechanics and Rock Engineering, 2013, 46(2): 231-246. doi: 10.1007/s00603-012-0320-4
|
[23] |
PANET M. Le calcul des tunnels par la methode convergence-confinement[M]. Paris: Presses de l'École Nationale des Ponts et Chaussees, 1995.
|
[24] |
房倩, 粟威, 张顶立, 等. 基于现场监测数据的隧道围岩变形特性研究[J]. 岩石力学与工程学报, 2016, 35(9): 1884-1897.
FANG Q, SU W, ZHANG D L, et al. Tunnel deformation characteristics based on on-site monitoring data[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1884-1897. (in Chinese with English abstract)
|
[25] |
孙柏林, 乔松林, 张乾青, 等. 隧道拱顶沉降及周边收敛动态过程预测的Richards时间函数模型[J]. 公路工程, 2015, 40(6): 114-118.
SUN B L, QIAO S L, ZHANG Q Q, et al. Richards time function model of dynamic process prediction for tunnel vault sedimentation and peripheral convergence[J]. Highway Engineering, 2015, 40(6): 114-118. (in Chinese with English abstract)
|
[26] |
ZHANG L L, ZHANG J, ZHANG L M, et al. Back analysis of slope failure with Markov chain Monte Carlo simulation[J]. Computers and Geotechnics, 2010, 37(7/8): 905-912.
|
[27] |
KUNG G T, JUANG C H, HSIAO E C, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731-747. doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)
|
[28] |
LI X Y, ZHANG L M, JIANG S H. Updating performance of high rock slopes by combining incremental time-series monitoring data and three-dimensional numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 252-261. doi: 10.1016/j.ijrmms.2014.09.011
|
[29] |
KONTOGIANNI V A, STIROS S C. Predictions and observations of convergence in shallow tunnels: Case histories in Greece[J]. Engineering Geology, 2002, 63(3/4): 333-345.
|
[30] |
JIN Y F, YIN Z Y, ZHOU W H, et al. Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method[J]. Acta Geotechnica, 2019, 14(6): 1925-1947. doi: 10.1007/s11440-019-00847-1
|
[31] |
CHING J, CHEN Y C. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics, 2007, 133(7): 816-832. doi: 10.1061/(ASCE)0733-9399(2007)133:7(816)
|
[32] |
YUEN K V. Recent developments of Bayesian model class selection and applications in civil engineering[J]. Structural Safety, 2010, 32(5): 338-346. doi: 10.1016/j.strusafe.2010.03.011
|
[33] |
CAO Z J, WANG Y, LI D Q. Quantification of prior knowledge in geotechnical site characterization[J]. Engineering Geology, 2016, 203: 107-116. doi: 10.1016/j.enggeo.2015.08.018
|
[34] |
SUN X P, ZENG P, LI T B, et al. A Bayesian approach to develop simple Run-out distance models: Loess landslides in Heifangtai Terrace, Gansu Province, China[J]. Landslides, 2023, 20(1): 77-95. doi: 10.1007/s10346-022-01965-w
|
[35] |
ZHANG J, WANG Z P, ZHANG G D, et al. Probabilistic prediction of slope failure time[J]. Engineering Geology, 2020, 271: 105586. doi: 10.1016/j.enggeo.2020.105586
|
[36] |
MASSEY JR F J. The Kolmogorov-Smirnov test for goodness of fit[J]. Journal of the American Statistical Association, 1951, 46(253): 68-78. doi: 10.1080/01621459.1951.10500769
|