Turn off MathJax
Article Contents
XIE Yunxuan,WANG Yang,WANG Mengyao,et al. Water resistance coefficient of bank slope landslides via physical model experiments[J]. Bulletin of Geological Science and Technology,2025,44(2):1-8 doi: 10.19509/j.cnki.dzkq.tb20240247
Citation: XIE Yunxuan,WANG Yang,WANG Mengyao,et al. Water resistance coefficient of bank slope landslides via physical model experiments[J]. Bulletin of Geological Science and Technology,2025,44(2):1-8 doi: 10.19509/j.cnki.dzkq.tb20240247

Water resistance coefficient of bank slope landslides via physical model experiments

doi: 10.19509/j.cnki.dzkq.tb20240247
More Information
  • Author Bio:

    E-mail:761194047@qq.com

  • Corresponding author: E-mail:wangyangcug@126.com
  • Received Date: 11 May 2024
  • Accepted Date: 01 Jul 2024
  • Rev Recd Date: 26 Jun 2024
  • Available Online: 21 Mar 2025
  • Objective

    Hydrodynamic resistance is one of the key factors influencing the velocity of landslides entering water. To quantify the resistance experienced by reservoir bank landslides upon water entry and provide experimental data and a theoretical basis for analyzing their entry velocity, this study designed an experiment to measure the water entry resistance coefficient.

    Methods

    Based on the dynamics and kinematics equations of submerged test blocks, a comprehensive calculation model for the water resistance coefficient was established. The experimental results were analyzed using dimensionless analysis methods to investigate the effects of various dimensionless factors on the water resistance coefficient. A multiple linear regression analysis was conducted to derive the comprehensive water resistance coefficient calculation model. Taking the Baige landslide of October 11, 2018, as a case study, the velocity of the Baige landslide was calculated using the theoretical formula for the water resistance coefficient, and the results were compared with those obtained from other methods.

    Results

    The results indicate that as relative velocity increases, the comprehensive water resistance coefficient initially rises and then decreases. Additionally, as the relative cross-sectional area increases, the comprehensive water resistance coefficient decreases. The theoretical formula for the water resistance coefficient has a coefficient of determination (R2) of 0.77, demonstrating good accuracy. Compared to existing calculation results, considering hydrodynamic resistance, the maximum movement speed of the Baige landslide decreased by 23.5%, with a maximum speed difference of 8.5 m/s, and the time at which the maximum speed occurred was delayed by 7.7 seconds.

    Conclusion

    This study proposes a comprehensive calculation model for the water resistance coefficient, addressing the challenge of determining its value accurately. This model contributes to improving the prediction accuracy of the entry velocity of reservoir bank landslides, thereby enhancing risk assessment and mitigation efforts.

     

  • loading
  • [1]
    COLLINS B D,REID M E. Enhanced landslide mobility by basal liquefaction:The 2014 State Route 530 (Oso),Washington,landslide[J]. Geological Society of America Bulletin,2020,132(3/4):451-476.
    [2]
    SITAR N,MACLAUGHLIN M M,DOOLIN D M. Influence of kinematics on landslide mobility and failure mode[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(6):716-728. doi: 10.1061/(ASCE)1090-0241(2005)131:6(716)
    [3]
    LIN C H. Insight into landslide kinematics from a broadband seismic network[J]. Earth,Planets and Space,2015,67(1):8.
    [4]
    SCHUSTER R L,FLEMING R W. Economic losses and fatalities due to landslides[J]. Environmental & Engineering Geoscience,1986,xxiii(1):11-28.
    [5]
    廖德武,郑冰,杜艳松,等. 兴仁“6·10” 彭家洞高速滑坡运动特征与形成机理[J]. 地质科技通报,2022,41(6):66-76.

    LIAO D W,ZHENG B,DU Y S,et al. Movement characteristics and formation mechanism of the “6·10” Pengjiadong high speed landslide in Xingren[J]. Bulletin of Geological Science and Technology,2022,41(6):66-76. (in Chinese with English abstract
    [6]
    许艺林,李远耀,李思德,等. 库水位下降叠加降雨作用时堆积层滑坡渗流−变形机制[J]. 地质科技通报,2024,43(1):216-228.

    XU Y L,LI Y Y,LI S D,et al. Seepage-deformation mechanism of colluvial landslides under the action of reservoir water level decline and rainfall[J]. Bulletin of Geological Science and Technology,2024,43(1):216-228. (in Chinese with English abstract
    [7]
    谢洋义,殷坤龙,杜娟,等. 基于不同地质环境分区的重庆市滑坡降雨阈值模型研究[J]. 地质科技通报,2025,44(1):126-137.

    XIE Y Y,YIN K L,DU J,et al. Threshold model of landslide rainfall in Chongqing based on different geological environment zones[J]. Bulletin of Geological Science and Technology,2025,44(1):126-137. (in Chinese with English abstract
    [8]
    张抒,唐辉明,龚文平,等. 基于物理力学机制的滑坡数值预报模式:综述、挑战与机遇[J]. 地质科技通报,2022,41(6):14-27.

    ZHANG S,TANG H M,GONG W P,et al. Landslide numerical forecasting mode based on physical- mechanical mechanism:Overviews,challenges and opportunities[J]. Bulletin of Geological Science and Technology,2022,41(6):14-27. (in Chinese with English abstract
    [9]
    WEN B P,WANG S J,WANG E Z,et al. Characteristics of rapid giant landslides in China[J]. Landslides,2004,1(4):247-261. doi: 10.1007/s10346-004-0022-4
    [10]
    SCHULZ W H,MCKENNA J P,KIBLER J D,et al. Relations between hydrology and velocity of a continuously moving landslide:Evidence of pore-pressure feedback regulating landslide motion?[J]. Landslides,2009,6(3):181-190. doi: 10.1007/s10346-009-0157-4
    [11]
    SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics,1973,5(4):231-236. doi: 10.1007/BF01301796
    [12]
    YAMADA M,MANGENEY A,MATSUSHI Y,et al. Estimation of dynamic friction and movement history of large landslides[J]. Landslides,2018,15(10):1963-1974. doi: 10.1007/s10346-018-1002-4
    [13]
    唐岳灏,姜清辉. SPH-DEM流固耦合方法模拟金沙江白格滑坡应用研究[J]. 长江工程职业技术学院学报,2023,40(2):1-8.

    TANG Y H,JIANG Q H. Study on application of SPH-DEM fluid-structure interaction to simulating baige landslide in Jinsha River[J]. Journal of Changjiang Institute of Technology,2023,40(2):1-8. (in Chinese with English abstract
    [14]
    唐岳灏,姜清辉. 金沙江白格滑坡残留体稳定性及堵江风险分析[J]. 水利水电快报,2023,44(5):38-44.

    TANG Y H,JIANG Q H. Stability and risk assessment of the residual body landslide and river blockage in Baige,Jinsha River[J]. Express Water Resources & Hydropower Information,2023,44(5):38-44. (in Chinese with English abstract
    [15]
    钟启明,吴昊,单熠博,等. 基于物质点法的白格滑坡堰塞坝形成过程数值模拟[J]. 人民长江,2024,55(4):25-31.

    ZHONG Q M,WU H,SHAN Y B,et al. Numerical simulation of Baige landslide barrier dam formation process based on material point method[J]. Yangtze River,2024,55(4):25-31. (in Chinese with English abstract
    [16]
    杨云建,周学铖,何中海,等. 多时相数字孪生滑坡变形监测方法与应用研究:以金沙江白格滑坡为例[J]. 水文地质工程地质,2024,51(2):132-143.

    YANG Y J,ZHOU X C,HE Z H,et al. Multi-temporal digital twin method and application of landslide deformation monitoring:A case study on Baige landslide in Jinsha River[J]. Hydrogeology & Engineering Geology,2024,51(2):132-143. (in Chinese with English abstract
    [17]
    林子钰,范刚,陈骎,等. 基于地震动信号分析的滑坡堵江过程研究:以白格滑坡堰塞湖为例[J]. 人民长江,2023,54(10):90-97.

    LIN Z Y,FAN G,CHEN Q,et al. Study on landslide blocking process based on ground motion signals analysis:Case of Baige landslide dammed lake[J]. Yangtze River,2023,54(10):90-97. (in Chinese with English abstract
    [18]
    殷坤龙,张宇,汪洋. 水库滑坡涌浪风险研究现状和灾害链风险管控实践[J]. 地质科技通报,2022,41(2):1-12.

    YIN K L,ZHANG Y,WANG Y. A review of landslide-generated waves risk and practice of management of hazard chain risk from reservoir landslide[J]. Bulletin of Geological Science and Technology,2022,41(2):1-12. (in Chinese with English abstract
    [19]
    胡大儒,吴述彧,罗超鹏,等. 澜沧江某巨型堆积体蓄水失稳诱发涌浪预测[J]. 地质科技通报,2024,43(6):78-88.

    HU D R,WU S Y,LUO C P,et al. Prediction of the wave induced by a gaint accumulation impoundment instability in Lantsang River[J]. Bulletin of Geological Science and Technology,2024,43(6):78-88. (in Chinese with English abstract
    [20]
    代云霞,殷坤龙,汪洋. 滑坡速度计算及涌浪预测方法探讨[J]. 岩土力学,2008,29(增刊1):407-411.

    DAI Y X,YIN K L,WANG Y. Discussion on method of landslide velocity calculation and surge prediction[J]. Rock and Soil Mechanics,2008,29(S1):407-411. (in Chinese with English abstract
    [21]
    汪洋,殷坤龙,刘艺梁,等. 考虑水阻力的库岸滑坡运动速度计算模型研究[J]. 工程地质学报,2012,20(6):903-908.

    WANG Y,YIN K L,LIU Y L,et al. Model test speed model of fording landslide taking into account water resistance[J]. Journal of Engineering Geology,2012,20(6):903-908. (in Chinese with English abstract
    [22]
    汪洋,刘艺梁. 平面滑动型涉水岩质滑坡速度计算模型研究[J]. 灾害学,2012,27(3):22-24.

    WANG Y,LIU Y L. Study on speed model of fording rock landslide moving along the planar slip surface[J]. Journal of Catastrophology,2012,27(3):22-24. (in Chinese with English abstract
    [23]
    倪崇本. 基于CFD的船舶阻力性能综合研究[D]. 上海:上海交通大学,2011.

    NI C B. A comprehensive investigation of ship resistance prediction based on CFD theory[D]. Shanghai:Shanghai Jiaotong University,2011. (in Chinese with English abstract
    [24]
    BAŠIĆ J,BLAGOJEVIĆ B,ANDRUN M. Improved estimation of ship wave-making resistance[J]. Ocean Engineering,2020,200:107079. doi: 10.1016/j.oceaneng.2020.107079
    [25]
    吴广怀,吴培德,蒋耀军,等. 基于兴波阻力的三体船片体位置快速优化方法[J]. 船舶力学,2005,9(4):1-8. doi: 10.3969/j.issn.1007-7294.2005.04.001

    WU G H,WU P D,JIANG Y J,et al. Fast method of positional optimization on distance between hulls of a trimaran based on wave resistance[J]. Journal of Ship Mechanics,2005,9(4):1-8. (in Chinese with English abstract doi: 10.3969/j.issn.1007-7294.2005.04.001
    [26]
    LI M X,CHEN Y,YUAN Z M,et al. Interference effects on the upstream wave generated by the catamaran moving across a depth change[J]. Ocean Engineering,2023,287:115939.
    [27]
    PENG H,NI S Y,QIU W. Wave pattern and resistance prediction for ships of full form[J]. Ocean Engineering,2014,87:162-173. doi: 10.1016/j.oceaneng.2014.06.004
    [28]
    卢晓平,王中,孙永华,等. Rankine源Dawson型方法求解三体船兴波阻力[J]. 华中科技大学学报(自然科学版),2008,36(11):103-107. doi: 10.3321/j.issn:1671-4512.2008.11.027

    LU X P,WANG Z,SUN Y H,et al. Solution to wave resistance to trimanan using-Rankine source method of Dawson type[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition),2008,36(11):103-107. (in Chinese with English abstract doi: 10.3321/j.issn:1671-4512.2008.11.027
    [29]
    陈京普,朱德祥,刘晓东. 兴波阻力数值预报方法研究及其在集装箱船船型优化中的应用[J]. 水动力学研究与进展(A辑),2006,21(1):113-121.

    CHEN J P,ZHU D X,LIU X D. A research on numerical prediction method for wave-making resistance and its application to container ship hull form optimization[J]. Journal of Hydrodynamics (Ser A),2006,21(1):113-121. (in Chinese with English abstract
    [30]
    LIU S,HE G H,WANG Z K,et al. Resistance and flow field of a submarine in a density stratified fluid[J]. Ocean Engineering,2020,217:107934. doi: 10.1016/j.oceaneng.2020.107934
    [31]
    ZENG Q S,HEKKENBERG R,THILL C,et al. Scale effects on the wave-making resistance of ships sailing in shallow water[J]. Ocean Engineering,2020,212:107654. doi: 10.1016/j.oceaneng.2020.107654
    [32]
    周礼,范宣梅,许强,等. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究[J]. 工程地质学报,2019,27(6):1395-1404.

    ZHOU L,FAN X M,XU Q,et al. Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha River[J]. Journal of Engineering Geology,2019,27(6):1395-1404. (in Chinese with English abstract
    [33]
    冯文凯,张国强,白慧林,等. 金沙江“10·11” 白格特大型滑坡形成机制及发展趋势初步分析[J]. 工程地质学报,2019,27(2):415-425.

    FENG W K,ZHANG G Q,BAI H L,et al. A preliminary analysis of the formation mechanism and development tendency of the huge Baige landslide in Jinsha River on October 11,2018[J]. Journal of Engineering Geology,2019,27(2):415-425. (in Chinese with English abstract
    [34]
    崔玉龙,许冲,焦其松,等. 金沙江白格两次滑坡几何形态分析与体积计算[J]. 工程地质学报,2019,27(增刊1):269-275.

    CUI Y L,XU C,JIAO Q S,et al. Geometric shape analysis and volume calculation of the two successive Baige landslides in Jinsha River[J]. Journal of Engineering Geology,2019,27(S1):269-275. (in Chinese with English abstract
    [35]
    杨仲康,魏进兵,高云建,等. 金沙江白格滑坡裂缝区失稳概率分析[J]. 工程科学与技术,2020,52(6):95-101.

    YANG Z K,WEI J B,GAO Y J,et al. Instability probability analysis of the cracking zones at the site of the Baige landslide in Jinsha River[J]. Advanced Engineering Sciences,2020,52(6):95-101. (in Chinese with English abstract
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(16) PDF Downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return