Volume 43 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
MA Ning, LI Shaokai, TIAN Feng, YE Xiao, ZHU Honghu. Fiber optic nerve sensing system for landslide monitoring: Technology and application[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 26-38. doi: 10.19509/j.cnki.dzkq.tb20240422
Citation: MA Ning, LI Shaokai, TIAN Feng, YE Xiao, ZHU Honghu. Fiber optic nerve sensing system for landslide monitoring: Technology and application[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 26-38. doi: 10.19509/j.cnki.dzkq.tb20240422

Fiber optic nerve sensing system for landslide monitoring: Technology and application

doi: 10.19509/j.cnki.dzkq.tb20240422
More Information
  • Author Bio:

    MA Ning, E-mail: maning@smail.nju.edu.cn

  • Corresponding author: ZHU Honghu, E-mail: zhh@nju.edu.cn
  • Received Date: 30 Jul 2024
  • Accepted Date: 29 Sep 2024
  • Rev Recd Date: 28 Sep 2024
  • Significance

    Landslide disasters are widely distributed in China. Effective monitoring, early warning, and risk management measures are key to disaster prevention and mitigation.

    Progress

    Compared with conventional techniques, distributed fiber optic sensing (DFOS) technology has made significant progress in landslide monitoring in recent decades, owing to its strengths in distributed, long-distance, large-range, and multiparameter monitoring. This paper first introduces several representative fiber optic sensing technologies, then proposes the concept of a fiber optic neural sensing system for landslides, and last elaborates the working principles of various fiber optic sensors and their deployment methods. Two typical landslide monitoring cases using ultra-weak fiber Bragg grating (UWFBG) monitoring technology are introduced, and the current technical bottlenecks are discussed.

    Conclusions and Prospects

    The case studies show that the fiber optic neural sensing system can achieve remote, real-time, high-precision underground multiparameter data acquisition, accurately detect potential slip surfaces and other key interfaces. Additionally, multiphysical changes at these interfaces provide important data support for understanding the underground evolution of landslides, which offers new insights into landslide prediction and early warning.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    彭建兵, 王启耀, 门玉明, 等. 黄土高原滑坡灾害[M]. 北京: 科学出版社, 2019.

    PENG J B, WANG Q Y, MEN Y M, et al. Landslide disaster in Loess Plateau[M]. Beijing: Science Press, 2019. (in Chinese)
    [2]
    董文文, 朱鸿鹄, 孙义杰, 等. 边坡变形监测技术现状及新进展[J]. 工程地质学报, 2016, 24(6): 1088-1095.

    DONG W W, ZHU H H, SUN Y J, et al. Current status and new progress on slope deformation monitoring technologies[J]. Journal of Engineering Geology, 2016, 24(6): 1088-1095. (in Chinese with English abstract)
    [3]
    程刚, 王振雪, 李刚强, 等. 我国滑坡监测文献计量研究的可视化分析[J]. 中国安全科学学报, 2022, 32(7): 172-179.

    CHENG G, WANG Z X, LI G Q, et al. Visual analysis of bibliometric research on landslide monitoring in China[J]. China Safety Science Journal, 2022, 32(7): 172-179. (in Chinese with English abstract)
    [4]
    许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374.

    XU Q. Understanding the landslide monitoring and early warning: Consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374. (in Chinese with English abstract)
    [5]
    FAN X M, XU Q, SCARINGI G, et al. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China[J]. Landslides, 2017, 14(6): 2129-2146. doi: 10.1007/s10346-017-0907-7
    [6]
    唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报, 2022, 41(6): 1-13. doi: 10.19509/j.cnki.dzkq.2022.0203

    TANG H M. Advance and prospects of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1-13. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0203
    [7]
    MACCIOTTA R, HENDRY M T. Remote sensing applications for landslide monitoring and investigation in western Canada[J]. Remote Sensing, 2021, 13(3): 366. doi: 10.3390/rs13030366
    [8]
    ASLAN G, FOUMELIS M, RAUCOULES D, et al. Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French Alps[J]. Remote Sensing, 2020, 12(8): 1305. doi: 10.3390/rs12081305
    [9]
    ZHANG Y, LI Y X, MENG X M, et al. Automatic mapping of potential landslides using satellite multitemporal interferometry[J]. Remote Sensing, 2023, 15(20): 4951. doi: 10.3390/rs15204951
    [10]
    ZHANG L, CUI Y F, ZHU H H, et al. Shear deformation calculation of landslide using distributed strain sensing technology considering the coupling effect[J]. Landslides, 2023, 20(8): 1583-1597. doi: 10.1007/s10346-023-02051-5
    [11]
    施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019.

    SHI B, ZHANG D, ZHU H H. Distributed fiber optic sensing for geoengineering monitoring[M]. Beijing: Science Press, 2019. (in Chinese)
    [12]
    SUN Y J, ZHANG D, SHI B, et al. Distributed acquisition, characterization and process analysis of multi-field information in slopes[J]. Engineering Geology, 2014, 182: 49-62. doi: 10.1016/j.enggeo.2014.08.025
    [13]
    MA J X, PEI H F, ZHU H H, et al. A review of previous studies on the applications of fiber optic sensing technologies in geotechnical monitoring[J]. Rock Mechanics Bulletin, 2023, 2(1): 100021. doi: 10.1016/j.rockmb.2022.100021
    [14]
    ZHANG C C, ZHU H H, LIU S P, et al. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements[J]. Engineering Geology, 2018, 234: 83-96. doi: 10.1016/j.enggeo.2018.01.002
    [15]
    WANG D Y, ZHU H H, WANG J, et al. Characterization of sliding surface deformation and stability evaluation of landslides with fiber-optic strain sensing nerves[J]. Engineering Geology, 2023, 314: 107011. doi: 10.1016/j.enggeo.2023.107011
    [16]
    KOGURE T, OKUDA Y. Monitoring the vertical distribution of rainfall-induced strain changes in a landslide measured by distributed fiber optic sensing with Rayleigh backscattering[J]. Geophysical Research Letters, 2018, 45(9): 4033-4040. doi: 10.1029/2018GL077607
    [17]
    ZENI L, PICARELLI L, AVOLIO B, et al. Brillouin optical time-domain analysis for geotechnical monitoring[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4): 458-462. doi: 10.1016/j.jrmge.2015.01.008
    [18]
    YE X, ZHU H H, WANG J, et al. Subsurface multi-physical monitoring of a reservoir landslide with the fiber-optic nerve system[J]. Geophysical Research Letters, 2022, 49(11): e98211.
    [19]
    ZHU H H, YE X, PEI H F, et al. Probing multi-physical process and deformation mechanism of a large-scale landslide using integrated dual-source monitoring[J]. Geoscience Frontiers, 2024, 15(2): 101773. doi: 10.1016/j.gsf.2023.101773
    [20]
    LIU S P, SHI B, GU K, et al. Fiber-optic wireless sensor network using ultra-weak fiber Bragg gratings for vertical subsurface deformation monitoring[J]. Natural Hazards, 2021, 109(3): 2557-2573. doi: 10.1007/s11069-021-04932-1
    [21]
    YE X, ZHU H H, CHENG G, et al. Thermo-hydro-poro-mechanical responses of a reservoir-induced landslide tracked by high-resolution fiber optic sensing nerves[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(3): 1018-1032. doi: 10.1016/j.jrmge.2023.04.004
    [22]
    GAO Y X, ZHU H H, QIAO L, et al. Feasibility study on sinkhole monitoring with fiber optic strain sensing nerves[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(11): 3059-3070. doi: 10.1016/j.jrmge.2022.12.026
    [23]
    WANG D Y, ZHU H H, WU B, et al. Performance evaluation of underground pipelines subjected to landslide thrust with fiber optic strain sensing nervess[J]. Acta Geotechnica, 2024, 19: 6993-7009. doi: 10.1007/s11440-024-02311-1
    [24]
    LI H J, ZHU H H, LI Y H, et al. Fiber Bragg grating-based flume test to study the initiation of landslide-debris flows induced by concentrated runoff[J]. Geotechnical Testing Journal, 2021, 44(4): 986-999. doi: 10.1520/GTJ20190290
    [25]
    KOO K P, TVETEN A B, VOHRA S T. Dense wavelength division multiplexing of fibre Bragg grating sensors using CDMA[J]. Electronics Letters, 1999, 35(2): 165. doi: 10.1049/el:19990135
    [26]
    BAO X Y, CHEN L. Recent progress in Brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4): 4152-4187. doi: 10.3390/s110404152
    [27]
    WANG D Y, ZHU H H, HUANG J W, et al. Fiber optic sensing and performance evaluation of a water conveyance tunnel with composite linings under super-high internal pressures[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(8): 1997-2012. doi: 10.1016/j.jrmge.2023.02.026
    [28]
    HORIGUCHI T, TATEDA M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory[J]. Journal of Lightwave Technology, 1989, 7(8): 1170-1176. doi: 10.1109/50.32378
    [29]
    姚俊成, 刘洁, 王金路, 等. 基于主动加热型分布式温度感测光缆的土体导热系数测量方法[J]. 水文地质工程地质, 2023, 50(1): 179-188.

    YAO J C, LIU J, WANG J L, et al. A study of soil thermal conductivity measurement based on the actively heated distributed temperature sensing cable[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 179-188. (in Chinese with English abstract)
    [30]
    喻文昭, 朱鸿鹄, 王德洋, 等. 荷载作用下砂土边坡-管道相互作用试验研究[J]. 岩土力学, 2024, 45(5): 1309-1320.

    YU W Z, ZHU H H, WANG D Y, et al. Experimental study of sandy slope-pipe interaction under loading[J]. Rock and Soil Mechanics, 2024, 45(5): 1309-1320. (in Chinese with English abstract)
    [31]
    ZHU H H, SHI B, ZHANG C C. FBG-based monitoring of geohazards: Current status and trends[J]. Sensors, 2017, 17(3): 452. doi: 10.3390/s17030452
    [32]
    ZHANG L, SHI B, ZENI L, et al. An fiber Bragg grating-based monitoring system for slope deformation studies in geotechnical centrifuges[J]. Sensors, 2019, 19(7): 1591. doi: 10.3390/s19071591
    [33]
    SANG H W, ZHANG D, GAO Y L, et al. Strain distribution based geometric models for characterizing the deformation of a sliding zone[J]. Engineering Geology, 2019, 263: 105300. doi: 10.1016/j.enggeo.2019.105300
    [34]
    ZHU H H, HO A N L, YIN J H, et al. An optical fibre monitoring system for evaluating the performance of a soil nailed slope[J]. Smart Structures and Systems, 2012, 9(5): 393-410. doi: 10.12989/sss.2012.9.5.393
    [35]
    武生辉, 仝德富, 苏爱军, 等. 新铺下二台滑坡变形机制及中长期预报模型[J]. 地质科技通报, 2022, 41(6): 35-44. doi: 10.19509/j.cnki.dzkq.2022.0235

    WU S H, TONG D F, SU A J, et al. Deformation mechanism and medium- and long-term landslide prediction model of Xinpu Xia'ertai landslide[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 35-44. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0235
    [36]
    俞良晨. 暂时性承压水作用下南京某山前缓坡滑动过程模拟分析[D]. 南京: 南京大学, 2021.

    YU L C. Simulation analysis of the sliding process of a piedmontgentle slope under the action of the temporary groundwater in the confined aquifer in Nanjing[D]. Nanjing: Nanjing University, 2021. (in Chinese with English abstract)
    [37]
    CHEN M L, YANG X G, ZHOU J W. Spatial distribution and failure mechanism of water-induced landslides in the reservoir areas of Southwest China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(2): 442-456.
    [38]
    YANG B B, LIU Z Q, LACASSE S, et al. Spatiotemporal deformation characteristics of Outang landslide and identification of triggering factors using data mining[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(10): 4088-4104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(136) PDF Downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return