Turn off MathJax
Article Contents
ZHANG Hang,HU Hairui,ZHU Jieqing,et al. Rapid analysis of the stability of a wedge-shaped unstable rock mass on the basis of non-contact measurements[J]. Bulletin of Geological Science and Technology,2025,44(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240496
Citation: ZHANG Hang,HU Hairui,ZHU Jieqing,et al. Rapid analysis of the stability of a wedge-shaped unstable rock mass on the basis of non-contact measurements[J]. Bulletin of Geological Science and Technology,2025,44(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240496

Rapid analysis of the stability of a wedge-shaped unstable rock mass on the basis of non-contact measurements

doi: 10.19509/j.cnki.dzkq.tb20240496
More Information
  • Author Bio:

    E-mail:804017998@qq.com

  • Corresponding author: E-mail: geyunfeng@cug.edu.cn
  • Received Date: 30 Aug 2024
  • Accepted Date: 23 Oct 2024
  • Rev Recd Date: 21 Oct 2024
  • Available Online: 23 Oct 2024
  • Objective

    With the frequent occurrence of landslide disasters in China, it is crucial to enhance research on unstable rock masses and slopes. Traditional analysis methods have limitations in quantifying certain factors, necessitating improvements. This paper adopts a non-contact measurement method to obtain and analyze parameters of wedge-shaped unstable rock masses and assess their stability under different working conditions.

    Methods

    Taking the wedge-shaped unstable rock mass in the upper reservoir of a pumped storage power station as an example, this study reveals the basic features and stability-influencing factors of the unstable rock mass based on detailed engineering geological field investigations. A long-distance 3D laser scanning system was used to collect high-precision point cloud data of the slope. Through preprocessing, spatial parameters of the wedge-shaped unstable rock mass were obtained. The critical surface plane was determined using least-squares fitting to calculate the slope angle and height of the wedge-shaped body. Local point cloud data were fitted to determine the normal vector, which was then used to calculate discontinuity orientations. The Alpha shape method was employed to calculate the volume of the unstable rock mass, with the most suitable radius parameter determined by comparing it with the actual unstable rock mass. The stability of the unstable rock mass was evaluated using the limit equilibrium method.

    Results

    The results show that under natural conditions, the stability coefficient of the wedge-shaped unstable rock mass is 1.131, indicating an essentially stable state; under rainstorm conditions, the stability coefficient drops to 0.896, indicating instability; and under seismic conditions, the stability coefficient is 0.917, also indicating instability.

    Conclusion

    This paper applies non-contact measurement and intelligent recognition techniques to the stability analysis of wedge-shaped unstable rock masses. The total analysis time was 102 minutes, significantly improving the efficiency of stability analysis and reducing risks associated with engineering construction. The proposed method provides a reliable alternative for assessing the stability of complex geological structures, enhancing safety and reliability in geotechnical engineering projects.

     

  • loading
  • [1]
    卢操,晏鄂川,张瑜,等. 降雨作用下青石镇政府后山堆积层滑坡渗流与稳定性[J]. 地质科技通报,2020,39(2):139-147.

    LU C,YAN E C,ZHANG Y,et al. Seepage and stability of the colluvial landslide on the back hill of Qingshi Town Government under rainfall[J]. Bulletin of Geological Science and Technology,2020,39(2):139-147. (in Chinese with English abstract
    [2]
    唐军峰,唐雪梅,肖鹏,等. 库水位升降与降雨作用下大型滑坡体渗流稳定性分析[J]. 地质科技通报,2021,40(4):153-161.

    TANG J F,TANG X M,XIAO P,et al. Analysis of seepage stability of large-scale landslide under water-level fluctuation and rainfall[J]. Bulletin of Geological Science and Technology,2021,40(4):153-161. (in Chinese with English abstract
    [3]
    杜文杰,盛谦,付晓东,等. 地震作用下岩羊村滑坡稳定性与失稳机制研究[J]. 岩土力学,2020,41(7):2461-2469.

    DU W J,SHENG Q,FU X D,et al. Dynamic stability analysis and failure mechanism of Yanyang Village landslide under earthquake[J]. Rock and Soil Mechanics,2020,41(7):2461-2469. (in Chinese with English abstract
    [4]
    李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价[J]. 工程科学学报,2022,44(3):440-450.

    LI B L,ZHANG F Y. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering,2022,44(3):440-450. (in Chinese with English abstract
    [5]
    杨校辉,周廷昱,刁显锋,等. 江水冲刷与降雨耦合作用下堆积体滑坡模型试验[J]. 兰州大学学报(自然科学版),2022,58(4):483-491.

    YANG X H,ZHOU T Y,DIAO X F,et al. A model test of accumulation landslide under the coupling effect of river erosion and rainfall[J]. Journal of Lanzhou University (Natural Sciences),2022,58(4):483-491. (in Chinese with English abstract
    [6]
    刘涛,张明,王立朝,等. 甘肃舟曲江顶崖古滑坡形成演化机理与堆积体稳定性评价[J]. 地质科技通报,2024,43(3):266-278.

    LIU T,ZHANG M,WANG L C,et al. Formation and evolution mechanism of the ancient landslide and stability evaluation of the accumulation body in Jiangdingya,Zhouqu County,Guansu Province[J]. Bulletin of Geological Science and Technology,2024,43(3):266-278. (in Chinese with English abstract
    [7]
    仝德富,谭飞,苏爱军,等. 基于多源数据的谭家湾滑坡变形机制及稳定性评价[J]. 地质科技通报,2021,40(4):162-170.

    TONG D F,TAN F,SU A J,et al. Deformation mechanism and stability evaluation of Tanjiawan landslide based on multi-source data[J]. Bulletin of Geological Science and Technology,2021,40(4):162-170. (in Chinese with English abstract
    [8]
    张占忠,陈富强,刘亚林,等. 基于遥感技术的嘉黎江巴变形体稳定性评价与分析[J]. 地质科技通报,2023,42(3):28-37.

    ZHANG Z Z,CHEN F Q,LIU Y L,et al. Stability evaluation and analysis of the Jiangba deformed body in Jiali County based on remote sensing technology[J]. Bulletin of Geological Science and Technology,2023,42(3):28-37. (in Chinese with English abstract
    [9]
    GE Y F,TANG H M,XIA D,et al. Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm[J]. Engineering Geology,2018,242:44-54. doi: 10.1016/j.enggeo.2018.05.007
    [10]
    DELIVERIS A V,ZEVGOLIS I E,KOUKOUZAS N C. Numerical modelling of slope stability in open pit lignite mines:A comparative study[J]. Bulletin of the Geological Society of Greece,2017,50(2):671. doi: 10.12681/bgsg.11773
    [11]
    宣程强,章杨松,许文涛. 基于数字表面模型的岩体结构面产状获取[J]. 水文地质工程地质,2022,49(1):75-83.

    XUAN C Q,ZHANG Y S,XU W T. Extraction of the discontinuity orientation from a digital surface model[J]. Hydrogeology & Engineering Geology,2022,49(1):75-83. (in Chinese with English abstract
    [12]
    郭登上,谢谟文,刘卫南,等. 基于三维点云的边坡岩体结构面提取方法与应用[J]. 矿业研究与开发,2022,42(5):197-202.

    GUO D S,XIE M W,LIU W N,et al. Extraction method of structural plane of slope rock mass based on 3D point cloud and its application[J]. Mining Research and Development,2022,42(5):197-202. (in Chinese with English abstract
    [13]
    葛云峰,夏丁,唐辉明,等. 基于三维激光扫描技术的岩体结构面智能识别与信息提取[J]. 岩石力学与工程学报,2017,36(12):3050-3061.

    GE Y F,XIA D,TANG H M,et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):3050-3061. (in Chinese with English abstract
    [14]
    林松,田林亚,毕继鑫,等. 基于最优邻域局部熵的点云精简算法[J]. 测绘工程,2021,30(5):12-17.

    LIN S,TIAN L Y,BI J X,et al. Point cloud simplification algorithm based on local entropy of optimal neighborhood[J]. Engineering of Surveying and Mapping,2021,30(5):12-17. (in Chinese with English abstract
    [15]
    刘昌军,丁留谦,孙东亚. 基于激光点云数据的岩体结构面全自动模糊群聚分析及几何信息获取[J]. 岩石力学与工程学报,2011,30(2):358-364.

    LIU C J,DING L Q,SUN D Y. Automatic fuzzy clustering analysis and geometric information acquisition of rock mass discontinuities based on laser point cloud data[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(2):358-364. (in Chinese with English abstract
    [16]
    GUO B N,MENON J,WILLETTE B. Surface reconstruction using alpha shapes[J]. Computer Graphics Forum,1997,16(4):177-190. doi: 10.1111/1467-8659.00178
    [17]
    吕国芳,郭和杰. 基于Alpha Shape的三维模型体积研究[J]. 计算技术与自动化,2023,42(1):160-165.

    LÜ G F,GUO H J. Volume research of 3D model based on alpha shape[J]. Computing Technology and Automation,2023,42(1):160-165. (in Chinese with English abstract
    [18]
    张鹤,李东升,陈爱军. Alpha-Shapes分段改进算法在三维模拟树枝体积扫描测量中的应用[J]. 中国测试,2021,47(3):49-58.

    ZHANG H,LI D S,CHEN A J. Application of Alpha-Shapes segmentation improvement algorithm in 3D simulation of branch volume scanning measurement[J]. China Measurement & Test,2021,47(3):49-58. (in Chinese with English abstract
    [19]
    DOS SANTOS R C,GALO M,CARRILHO A C. Extraction of building roof boundaries from LiDAR data using an adaptive alpha-shape algorithm[J]. IEEE Geoscience and Remote Sensing Letters,2019,16(8):1289-1293. doi: 10.1109/LGRS.2019.2894098
    [20]
    AL-MESTAREHI B,OBAIDAT M. Creating a complete model of the Wooden pattern from laser scanner point clouds using Alpha Shapes[J]. Jordan Journal of Civil Engineering,2019,13(2):42-57.
    [21]
    NI W D,TANG H M,LIU X,et al. Dynamic stability analysis of wedge in rock slope based on kinetic vector method[J]. Journal of Earth Science,2014,25(4):749-756.
    [22]
    WANG S F,ZHANG Z X,HUANG X,et al. Generalized block theory for the stability analysis of blocky rock mass systems under seismic loads[J]. Rock Mechanics and Rock Engineering,2022,55(5):2747-2769. doi: 10.1007/s00603-021-02628-3
    [23]
    GE Y F,CAO B,CHEN Q,et al. Rock joint detection from 3D point clouds based on colour space[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2023,56(4):qjegh2023-012.
    [24]
    ZHOU Y D,ZOU P,WANG F F,et al. Study on high and steep slope stability and slope angle optimization of open-pit based on limit equilibrium and numerical simulation[J]. Geotechnical and Geological Engineering,2020,38(6):5737-5753. doi: 10.1007/s10706-020-01390-7
    [25]
    夏相骅,刘德成,李玉倩,等. 北京雁栖镇典型危岩基本特征及稳定性分析[J]. 中国地质灾害与防治学报,2021,32(1):28-34.

    XIA X H,LIU D C,LI Y Q,et al. Basic characteristics and stability evaluation of dangerous rockmasses in Yanqi Town,Beijing[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):28-34. (in Chinese with English abstract
    [26]
    苏国韶,刘本朝,刘友能,等. 危岩体稳定性分析三维极限平衡法[J]. 金属矿山,2025,(1):72-80

    SU G S,LIU B C,LIU Y N,et al. Three-dimensional limit equilibrium method for stability analysis of dangerous rock mass[J]. China Industrial Economics,2025,(1):72-80.(in Chinese with English abstract
    [27]
    张兴秋,邓正定,舒佳军. 多频次爆破扰动对倾倒式危岩体稳定性影响分析[J]. 有色金属科学与工程,2024,15(4):561-569.

    ZHANG X Q,DENG Z D,SHU J J. Influence analysis of frequent blasting disturbance on the stability of toppling perilous rocks[J]. Nonferrous Metals Science and Engineering,2024,15(4):561-569. (in Chinese with English abstract
    [28]
    周洪福,冯治国,石胜伟,等. 川藏铁路某特大桥成都侧岸坡工程地质特征及稳定性评价[J]. 水文地质工程地质,2021,48(5):112-119.

    ZHOU H F,FENG Z G,SHI S W,et al. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):112-119. (in Chinese with English abstract
    [29]
    HAN Y J,HORSFIELD B,CURRY D J. Control of facies,maturation and primary migration on biomarkers in the Barnett Shale sequence in the Marathon 1 Mesquite well,Texas[J]. Marine and Petroleum Geology,2017,85:106-116. doi: 10.1016/j.marpetgeo.2017.04.018
    [30]
    文海家,张岩岩,付红梅,等. 降雨型滑坡失稳机理及稳定性评价方法研究进展[J]. 中国公路学报,2018,31(2):15-29.

    WEN H J,ZHANG Y Y,FU H M,et al. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods[J]. China Journal of Highway and Transport,2018,31(2):15-29. (in Chinese with English abstract
    [31]
    周伟,马啸,陈文毅,等. 华北平原蓟县系雾迷山组碳酸盐岩热储岩体原位环境下力学特性研究[J]. 地学前缘,2024,31(6):95-103.

    ZHOU W,MA X,CHEN W Y,et al. Carbonates of the wumishan formation,Jixian system in the North China Plain:Mechanical properties under in situ geothermal conditions[J]. Earth Science Frontiers,2024,31(6):95-103. (in Chinese with English abstract
    [32]
    魏永民,王娟. 天津沧县隆起蓟县系雾迷山组热储尾水回灌地温场变化特征分析[J/OL]. 桂林理工大学学报,2024:1-8. (2024-07-31). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=GLGX20240729002&dbname=CJFD&dbcode=CJFQ.

    WEI Y M,WANG J. Analysis on the variation characteristics of geothermal field of thermal storage tailwater recharge in Wumishan Formation of Jixian system in Cangxian uplift,Tianjin[J/OL]. China Industrial Economics,2024:1-8. (2024-07-31). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=GLGX20240729002&dbname=CJFD&dbcode=CJFQ.(in Chinese)
    [33]
    刘帅,朱杰勇,杨得虎,等. 不同降雨工况条件下的崩滑地质灾害危险性评价[J]. 地质科技通报,2024,43(2):253-267.

    LIU S,ZHU J Y,YANG D H,et al. Geological hazard risk assessment of collapse and landslide under different rainfall conditions[J]. Bulletin of Geological Science and Technology,2024,43(2):253-267. (in Chinese with English abstract
    [34]
    赵方彬,王运生,寇瑞斌,等. 四川珙县下软上硬山岭地貌斜坡地震动响应特征[J]. 地质科技通报,2023,42(2):279-287.

    ZHAO F B,WANG Y S,KOU R B,et al. Seismic dynamic response characteristics of the lower soft and upper hard mountain slopes in Gongxian,Sichuan[J]. Bulletin of Geological Science and Technology,2023,42(2):279-287. (in Chinese with English abstract
    [35]
    GE Y F,CHEN W X,YE Y,et al. Experimental study on the influence of morphological parameters on kinematics of rockfall trajectory[J]. Bulletin of Engineering Geology and the Environment,2024,83(8):324. doi: 10.1007/s10064-024-03821-8
    [36]
    WANG J M,ZHANG Y B,YU P C,et al. Dynamic process study of earthquake-induced landslides applying an improved discontinuous deformation analysis method considering site response[J]. Rock Mechanics and Rock Engineering,2023,56(7):5427-5446. doi: 10.1007/s00603-023-03335-x
    [37]
    YIN Y P,WANG L Q,ZHANG W G,et al. Research on the collapse process of a thick-layer dangerous rock on the reservoir bank[J]. Bulletin of Engineering Geology and the Environment,2022,81(3):109. doi: 10.1007/s10064-022-02618-x
    [38]
    唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报,2022,41(6):1-13.

    TANG H M. Advance and prospects of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology,2022,41(6):1-13. (in Chinese with English abstract
    [39]
    GUO C B,ZHANG Y S,LI X,et al. Reactivation of giant jiangdingya ancient landslide in Zhouqu County,Gansu Province,China[J]. Landslides,2020,17(1):179-190. doi: 10.1007/s10346-019-01266-9
    [40]
    LI Q Q,CHEN F L,WU S Q,et al. A simple and effective evaluation method for lacustrine shale oil based on mass balance calculation of Rock-Eval data[J]. Applied Geochemistry,2022,140:105287. doi: 10.1016/j.apgeochem.2022.105287
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(104) PDF Downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return