Citation: | HUANG Faming,CHEN Jie,YANG Yang,et al. A review and prospect of research on disaster-causing environment factors related to landslide susceptibility prediction[J]. Bulletin of Geological Science and Technology,2025,44(2):1-24 doi: 10.19509/j.cnki.dzkq.tb20240766 |
Disaster-causing environmental factors serve as input variables for landslide susceptibility prediction modeling, referring to various natural attribute factors influencing the occurrence, development, and distribution of landslides on slopes. A comprehensive and clearly-defined set of disaster-causing environmental factors is of vital importance for enhancing the accuracy and reliability of landslide susceptibility outcomes.
To further clarify the research status and future prospects of disaster-causing environmental factors, this paper conducted a literature search in the core collection database of Web of Science, with the titles containing "landslide susceptibility" and the publication date ranging from 01/01/2013 to 31/12/2023, collecting 767 English papers on landslide susceptibility to form a literature database. Firstly, information such as the quantity of disaster-causing environmental factors, acquisition methods, sources, importance, and acceptance in each paper was statistically analyzed. Then, the definitions and physical meanings of disaster-causing environmental factors were elaborated in detail. Subsequently, characteristics such as the optimization selection/combination methods of disaster-causing environmental factors, factor connection methods, factor errors, and suitability were discussed, providing a reference for the uncertainty research of selecting disaster-causing environmental factors when predicting landslide susceptibility.
The review results indicate that: (1) A total of 82 types of disaster-causing environmental factors were statistically analyzed in the literature database, with over 40 frequently used ones. Among them, slope, aspect, elevation, and lithology are the four most frequently used factors. The importance of factors such as slope, elevation, road density, lithology, and rainfall in landslide susceptibility prediction is the highest in sequence. (2) It was discovered that research on using comprehensive and physically meaningful disaster-causing environmental factors, constructing model input variables based on environmental factor connection methods, eliminating random errors in environmental factors, enhancing the suitability of environmental factors, and employing various explainable methods can effectively improve the performance of machine learning in predicting landslide susceptibility. Therefore, in future research on the disaster-causing environmental factors of landslides, it is necessary to focus on these key issues.
[1] |
石菊松. 基于遥感和地理信息系统的滑坡风险评估关键技术研究[D]. 北京:中国地质科学院,2008.
SHI J S. Key techniques study of remote sensing and geographic information system based landslide risk assessment[D]. Beijing:Chinese Academy of Geological Sciences,2008. (in Chinese with English abstract
|
[2] |
窦杰,向子林,许强,等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学,2023,48(5):1657-1674.
DOU J,XIANG Z L,XU Q,et al. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science,2023,48(5):1657-1674. (in Chinese with English abstract
|
[3] |
CHENG L B,LI J,DUAN P,et al. A small attentional YOLO model for landslide detection from satellite remote sensing images[J]. Landslides,2021,18(8):2751-2765. doi: 10.1007/s10346-021-01694-6
|
[4] |
黄发明,胡松雁,闫学涯,等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报,2022,41(2):79-90.
HUANG F M,HU S Y,YAN X Y,et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology,2022,41(2):79-90. (in Chinese with English abstract
|
[5] |
LOMBARDO L,MAI P M. Presenting logistic regression-based landslide susceptibility results[J]. Engineering Geology,2018,244:14-24. doi: 10.1016/j.enggeo.2018.07.019
|
[6] |
郭衍昊,窦杰,向子林,等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报,2024,43(3):251-265.
GUO Y H,DOU J,XIANG Z L,et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology,2024,43(3):251-265. (in Chinese with English abstract
|
[7] |
EKMEKCIOĞLU Ö,KOC K. Explainable step-wise binary classification for the susceptibility assessment of geo-hydrological hazards[J]. Catena,2022,216:106379. doi: 10.1016/j.catena.2022.106379
|
[8] |
ZHANG J Y,MA X L,ZHANG J L,et al. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model[J]. Journal of Environmental Management,2023,332:117357. doi: 10.1016/j.jenvman.2023.117357
|
[9] |
黄发明,曹昱,范宣梅,等. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律[J]. 岩石力学与工程学报,2021,40(增刊2):3227-3240.
HUANG F M,CAO Y,FAN X M,et al. Effects of different landslide boundaries and their spatial shapes on the uncertainty of landslide susceptibility prediction[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S2):3227-3240. (in Chinese with English abstract
|
[10] |
黄发明,刘科技,曾子强,等. 环境因子筛选及组合方法对滑坡易发性预测的影响规律[J]. 应用基础与工程科学学报,2024,32(1):49-71.
HUANG F M,LIU K J,ZENG Z Q,et al. Influence of environmental factor selection and combination on landslide susceptibility prediction modeling[J]. Journal of Basic Science and Engineering,2024,32(1):49-71. (in Chinese with English abstract
|
[11] |
CHANG Z L,CATANI F,HUANG F M,et al. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(5):1127-1143. doi: 10.1016/j.jrmge.2022.07.009
|
[12] |
HUANG F M,TENG Z K,YAO C,et al. Uncertainties of landslide susceptibility prediction:Influences of random errors in landslide conditioning factors and errors reduction by low pass filter method[J]. Journal of Rock Mechanics and Geotechnical Engineering,2024,16(1):213-230. doi: 10.1016/j.jrmge.2023.11.001
|
[13] |
YANG Z L,LU H,ZHANG Z J,et al. Visualization analysis of rainfall-induced landslides hazards based on remote sensing and geographic information system:An overview[J]. International Journal of Digital Earth,2023,16(1):2374-2402. doi: 10.1080/17538947.2023.2229797
|
[14] |
RAHMATI O,TAHMASEBIPOUR N,HAGHIZADEH A,et al. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran:An integrated framework[J]. Science of the Total Environment,2017,579:913-927. doi: 10.1016/j.scitotenv.2016.10.176
|
[15] |
HUANG F M,CAO Z S,GUO J F,et al. Comparisons of heuristic,general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. Catena,2020,191:104580. doi: 10.1016/j.catena.2020.104580
|
[16] |
WANG H,YANG T H,ZHANG P H,et al. Landslide susceptibility prediction considering rock integrity and stress state:A case study[J]. Bulletin of Engineering Geology and the Environment,2023,82(7):259. doi: 10.1007/s10064-023-03250-z
|
[17] |
BEHNIA P,BLAIS-STEVENS A. Landslide susceptibility modelling using the quantitative random forest method along the northern portion of the Yukon Alaska Highway Corridor,Canada[J]. Natural Hazards,2018,90(3):1407-1426. doi: 10.1007/s11069-017-3104-z
|
[18] |
LIU Q,TANG A P,HUANG Z Y,et al. Discussion on the tree-based machine learning model in the study of landslide susceptibility[J]. Natural Hazards,2022,113(2):887-911. doi: 10.1007/s11069-022-05329-4
|
[19] |
REICHENBACH P,ROSSI M,MALAMUD B D,et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews,2018,180:60-91. doi: 10.1016/j.earscirev.2018.03.001
|
[20] |
ZHANG Y G,MIGLIAVACCA M,PENUELAS J,et al. Advances in hyperspectral remote sensing of vegetation traits and functions[J]. Remote Sensing of Environment,2021,252:112121. doi: 10.1016/j.rse.2020.112121
|
[21] |
ZHOU C,GAN L L,CAO Y,et al. Landslide susceptibility assessment of the Wanzhou district:Merging landslide susceptibility modelling (LSM) with InSAR-derived ground deformation map[J]. International Journal of Applied Earth Observation and Geoinformation,2025,136:104365. doi: 10.1016/j.jag.2025.104365
|
[22] |
郭飞,赖鹏,黄发明,等. 基于知识图谱的滑坡易发性评价文献综述及研究进展[J]. 地球科学,2024,49(5):1584-1606.
GUO F,LAI P,HUANG F M,et al. Literature review and research progress of landslide susceptibility mapping based on knowledge graph[J]. Earth Science,2024,49(5):1584-1606. (in Chinese with English abstract
|
[23] |
罗路广,裴向军,黄润秋,等. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报,2021,29(2):526-535.
LUO L G,PEI X J,HUANG R Q,et al. Landslide susceptibility assessment in Jiuzhaigou Scenic Area with GIS based on certainty factor and logistic regression model[J]. Journal of Engineering Geology,2021,29(2):526-535. (in Chinese with English abstract
|
[24] |
常志璐,黄发明,蒋水华,等. 基于多尺度分割方法的斜坡单元划分及滑坡易发性预测[J]. 工程科学与技术,2023,55(1):184-195.
CHANG Z L,HUANG F M,JIANG S H,et al. Slope unit extraction and landslide susceptibility prediction using multi-scale segmentation method[J]. Advanced Engineering Sciences,2023,55(1):184-195. (in Chinese with English abstract
|
[25] |
SCHLÖGEL R,MARCHESINI I,ALVIOLI M,et al. Optimizing landslide susceptibility zonation:Effects of DEM spatial resolution and slope unit delineation on logistic regression models[J]. Geomorphology,2018,301:10-20. doi: 10.1016/j.geomorph.2017.10.018
|
[26] |
黄发明,李金凤,王俊宇,等. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律[J]. 地质科技通报,2022,41(2):44-59.
HUANG F M,LI J F,WANG J Y,et al. Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models[J]. Bulletin of Geological Science and Technology,2022,41(2):44-59. (in Chinese with English abstract
|
[27] |
HUANG F M,YAO C,LIU W P,et al. Landslide susceptibility assessment in the Nantian area of China:A comparison of frequency ratio model and support vector machine[J]. Geomatics,Natural Hazards and Risk,2018,9(1):919-938. doi: 10.1080/19475705.2018.1482963
|
[28] |
YOUSSEF A M,POURGHASEMI H R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin,Asir region,Saudi Arabia[J]. Geoscience Frontiers,2021,12(2):639-655. doi: 10.1016/j.gsf.2020.05.010
|
[29] |
LIU L L,ZHANG Y L,XIAO T,et al. A frequency ratio-based sampling strategy for landslide susceptibility assessment[J]. Bulletin of Engineering Geology and the Environment,2022,81(9):360. doi: 10.1007/s10064-022-02836-3
|
[30] |
HUANG F M,TAO S Y,LI D Y,et al. Landslide susceptibility prediction considering neighborhood characteristics of landslide spatial datasets and hydrological slope units using remote sensing and GIS technologies[J]. Remote Sensing,2022,14(18):4436. doi: 10.3390/rs14184436
|
[31] |
YANG Y,YANG J T,XU C D,et al. Local-scale landslide susceptibility mapping using the B-GeoSVC model[J]. Landslides,2019,16(7):1301-1312. doi: 10.1007/s10346-019-01174-y
|
[32] |
LIAO M Y,WEN H J,YANG L. Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning:A case of Wushan and Wuxi Counties,China[J]. Catena,2022,217:106428. doi: 10.1016/j.catena.2022.106428
|
[33] |
MEINHARDT M,FINK M,TüNSCHEL H. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory:Comparison of a new method to calculate weighting factors by means of bivariate statistics[J]. Geomorphology,2015,234:80-97. doi: 10.1016/j.geomorph.2014.12.042
|
[34] |
GRABOWSKI D,LASKOWICZ I,MAŁKA A,et al. Geoenvironmental conditioning of landsliding in river valleys of lowland regions and its significance in landslide susceptibility assessment:A case study in the Lower Vistula Valley,Northern Poland[J]. Geomorphology,2022,419:108490. doi: 10.1016/j.geomorph.2022.108490
|
[35] |
NICU I C,LOMBARDO L,RUBENSDOTTER L. Preliminary assessment of thaw slump hazard to Arctic cultural heritage in Nordenskiöld Land,Svalbard[J]. Landslides,2021,18(8):2935-2947. doi: 10.1007/s10346-021-01684-8
|
[36] |
OH H J,KADAVI P R,LEE C W,et al. Evaluation of landslide susceptibility mapping by evidential belief function,logistic regression and support vector machine models[J]. Geomatics,Natural Hazards and Risk,2018,9(1):1053-1070. doi: 10.1080/19475705.2018.1481147
|
[37] |
SENA N C,VELOSO G V,FERNANDES-FILHO E I,et al. Analysis of terrain attributes in different spatial resolutions for digital soil mapping application in southeastern Brazil[J]. Geoderma Regional,2020,21:e00268. doi: 10.1016/j.geodrs.2020.e00268
|
[38] |
POURGHASEMI H R,PRADHAN B,GOKCEOGLU C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed,Iran[J]. Natural Hazards,2012,63(2):965-996. doi: 10.1007/s11069-012-0217-2
|
[39] |
CHEN W,YANG Z F. Landslide susceptibility modeling using bivariate statistical-based logistic regression,naïve Bayes,and alternating decision tree models[J]. Bulletin of Engineering Geology and the Environment,2023,82(5):190. doi: 10.1007/s10064-023-03216-1
|
[40] |
PARDO-IGúZQUIZA E,DOWD P A. The mapping of closed depressions and its contribution to the geodiversity inventory[J]. International Journal of Geoheritage and Parks,2021,9(4):480-495. doi: 10.1016/j.ijgeop.2021.11.007
|
[41] |
HUANG F M,CHEN J W,LIU W P,et al. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold[J]. Geomorphology,2022,408:108236. doi: 10.1016/j.geomorph.2022.108236
|
[42] |
CHEN Z,YE F,FU W X,et al. The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River Basin,NW China[J]. Natural Hazards,2020,101(3):853-877. doi: 10.1007/s11069-020-03899-9
|
[43] |
CHEN W,LI Y. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models[J]. Catena,2020,195:104777. doi: 10.1016/j.catena.2020.104777
|
[44] |
HUANG F M,XIONG H W,YAO C,et al. Uncertainties of landslide susceptibility prediction considering different landslide types[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(11):2954-2972. doi: 10.1016/j.jrmge.2023.03.001
|
[45] |
LEE D H,KIM Y T,LEE S R. Shallow landslide susceptibility models based on artificial neural networks considering the factor selection method and various non-linear activation functions[J]. Remote Sensing,2020,12(7):1194. doi: 10.3390/rs12071194
|
[46] |
RENARD K G. Predicting soil erosion by water:A guide to conservation planning with the revised universal soil loss equation (RUSLE)[M]. Washington,D. C:U. S. Dept. of Agriculture,Agricultural Research Service,1997.
|
[47] |
DU J,GLADE T,WOLDAI T,et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley,Tibet,Chinese Himalayas[J]. Engineering Geology,2020,270:105572. doi: 10.1016/j.enggeo.2020.105572
|
[48] |
CHEN W,PANAHI M,TSANGARATOS P,et al. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility[J]. Catena,2019,172:212-231.
|
[49] |
BORRELLI L,CIURLEO M,GULLÀ G. Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: The contribution of the weathering grade map[J]. Landslides,2018,15(6):1127-1142.
|
[50] |
DORIGO W,WAGNER W,ALBERGEL C,et al. ESA CCI soil Moisture for improved Earth system understanding: State-of-the art and future directions[J]. Remote Sensing of Environment,2017,203:185-215.
|
[51] |
HAKIM W L,REZAIE F,NUR A S,et al. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon,South Korea[J]. Journal of Environmental Management,2022,305:114367. doi: 10.1016/j.jenvman.2021.114367
|
[52] |
PANAHI M,RAHMATI O,REZAIE F,et al. Application of the group method of data handling (GMDH) approach for landslide susceptibility zonation using readily available spatial covariates[J]. Catena,2022,208:105779. doi: 10.1016/j.catena.2021.105779
|
[53] |
黄发明,吴敦筱,常志璐,等. 滑坡样本缺失下易发性规律和潜在滑坡识别的易发性–InSAR多源信息法[J]. 岩石力学与工程学报,2025,44(3):584-601. doi: 10.3724/1000-6915.jrme.2024.0449
HUANG F M,WU D X,CHANG Z L,et al. Landslide susceptibility law under the absence of landslide sample and the susceptibility-InSAR multi-source information method considering the potential landslide identification[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(3):584-601. (in Chinese with English abstract doi: 10.3724/1000-6915.jrme.2024.0449
|
[54] |
POURGHASEMI H R,RAHMATI O. Prediction of the landslide susceptibility:Which algorithm,which precision?[J]. Catena,2018,162:177-192. doi: 10.1016/j.catena.2017.11.022
|
[55] |
ALI S A,PARVIN F,VOJTEKOVÁ J,et al. GIS-based landslide susceptibility modeling:A comparison between fuzzy multi-criteria and machine learning algorithms[J]. Geoscience Frontiers,2021,12(2):857-876. doi: 10.1016/j.gsf.2020.09.004
|
[56] |
PACHECO QUEVEDO R,VELASTEGUI-MONTOYA A,MONTALVáN-BURBANO N,et al. Land use and land cover as a conditioning factor in landslide susceptibility:A literature review[J]. Landslides,2023,20(5):967-982. doi: 10.1007/s10346-022-02020-4
|
[57] |
BALOGUN A L,YEKEEN S T,PRADHAN B,et al. Spatio-temporal analysis of oil spill impact and recovery pattern of coastal vegetation and wetland using multispectral satellite landsat 8-OLI imagery and machine learning models[J]. Remote Sensing,2020,12(7):1225.
|
[58] |
WANG J N,WANG Y Q,LI C,et al. Landslide susceptibility evaluation based on landslide classification and ANN-NFR modelling in the Three Gorges Reservoir area, China[J]. Ecological Indicators,2024,160:111920.
|
[59] |
BAG R,MONDAL I,DEHBOZORGI M,et al. Modelling and mapping of soil erosion susceptibility using machine learning in a tropical hot sub-humid environment[J]. Journal of Cleaner Production,2022,364:132428.
|
[60] |
CHEN T K,PRISHCHEPOV A V,FENSHOLT R,et al. Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal landsat imagery across Taiwan from 1998 to 2017[J]. Remote Sensing of Environment,2019,225:317-327.
|
[61] |
SEGONI S,PAPPAFICO G,LUTI T,et al. Landslide susceptibility assessment in complex geological settings:Sensitivity to geological information and insights on its parameterization[J]. Landslides,2020,17(10):2443-2453. doi: 10.1007/s10346-019-01340-2
|
[62] |
THI NGO P T,PANAHI M,KHOSRAVI K,et al. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran[J]. Geoscience Frontiers,2021,12(2):505-519. doi: 10.1016/j.gsf.2020.06.013
|
[63] |
PHAM B T,PRAKASH I,SINGH S K,et al. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques:Hybrid machine learning approaches[J]. Catena,2019,175:203-218. doi: 10.1016/j.catena.2018.12.018
|
[64] |
SHRESTHA S,KANG T S. Assessment of seismically-induced landslide susceptibility after the 2015 Gorkha earthquake,Nepal[J]. Bulletin of Engineering Geology and the Environment,2019,78(3):1829-1842. doi: 10.1007/s10064-017-1191-4
|
[65] |
DAI L X,FAN X M,WANG X,et al. Coseismic landslides triggered by the 2022 Luding Ms6.8 earthquake,China[J]. Landslides,2023,20(6):1277-1292. doi: 10.1007/s10346-023-02061-3
|
[66] |
BORRELLI L,CIURLEO M,GULLÀ G. Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods:The contribution of the weathering grade map[J]. Landslides,2018,15(6):1127-1142. doi: 10.1007/s10346-018-0947-7
|
[67] |
CARPENTIER S,KONZ M,FISCHER R,et al. Geophysical imaging of shallow subsurface topography and its implication for shallow landslide susceptibility in the Urseren Valley, Switzerland[J]. Journal of Applied Geophysics,2012,83:46-56.
|
[68] |
ZOU Q,JIANG H,CUI P,et al. A new approach to assess landslide susceptibility based on slope failure mechanisms[J]. Catena,2021,204:105388.
|
[69] |
YANG Z H,LAN H X,GAO X,et al. Urgent landslide susceptibility assessment in the 2013 Lushan earthquake-impacted area, Sichuan Province, China[J]. Natural Hazards,2015,75(3):2467-2487.
|
[70] |
MIAO F S,WU Y P,LI L W,et al. Triggering factors and threshold analysis of Baishuihe landslide based on the data mining methods[J]. Natural Hazards,2021,105(3):2677-2696. doi: 10.1007/s11069-020-04419-5
|
[71] |
ZHAO F C,MIAO F S,WU Y P,et al. Landslide dynamic susceptibility mapping in urban expansion area considering spatiotemporal land use and land cover change[J]. Science of the Total Environment,2024,949:175059. doi: 10.1016/j.scitotenv.2024.175059
|
[72] |
AL-NAJJAR H A H,PRADHAN B,BEYDOUN G,et al. A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset[J]. Gondwana Research,2023,123:107-124. doi: 10.1016/j.gr.2022.08.004
|
[73] |
WANG N,ZHANG H Y,DAHAL A,et al. On the use of explainable AI for susceptibility modeling:Examining the spatial pattern of SHAP values[J]. Geoscience Frontiers,2024,15(4):101800. doi: 10.1016/j.gsf.2024.101800
|
[74] |
田乃满,兰恒星,伍宇明,等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报,2020,22(12):2304-2316. doi: 10.12082/dqxxkx.2020.190766
TIAN N M,LAN H X,WU Y M,et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science,2020,22(12):2304-2316. (in Chinese with English abstract doi: 10.12082/dqxxkx.2020.190766
|
[75] |
DOU J,YUNUS A P,TIEN B D,et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island,Japan[J]. Science of the Total Environment,2019,662:332-346.
|
[76] |
HUANG F M,ZHANG J,ZHOU C B,et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides,2020,17(1):217-229. doi: 10.1007/s10346-019-01274-9
|
[77] |
崔鸿雁,徐帅,张利锋,等. 机器学习中的特征选择方法研究及展望[J]. 北京邮电大学学报,2018,41(1):1-12.
CUI H Y,XU S,ZHANG L F,et al. The key techniques and future vision of feature selection in machine learning[J]. Journal of Beijing University of Posts and Telecommunications,2018,41(1):1-12. (in Chinese with English abstract
|
[78] |
CHEN W,CHEN X,PENG J B,et al. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer[J]. Geoscience Frontiers,2021,12(1):93-107. doi: 10.1016/j.gsf.2020.07.012
|
[79] |
PHAM B T,TIEN BUI D,PRAKASH I,et al. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS[J]. Catena,2017,149:52-63. doi: 10.1016/j.catena.2016.09.007
|
[80] |
YANG J T,SONG C,YANG Y,et al. New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector:A case study of Duwen Highway Basin,Sichuan Province,China[J]. Geomorphology,2019,324:62-71. doi: 10.1016/j.geomorph.2018.09.019
|
[81] |
TANYU B F,ABBASPOUR A,ALIMOHAMMADLOU Y,et al. Landslide susceptibility analyses using Random Forest,C4.5,and C5.0 with balanced and unbalanced datasets[J]. Catena,2021,203:105355. doi: 10.1016/j.catena.2021.105355
|
[82] |
曹文庚,潘登,徐郅杰,等. 河南省滑坡灾害易发性制图研究:多种机器学习模型的对比[J]. 地质科技通报,2025,44(1):101-111.
CAO W G,PAN D,XU Z J,et al. Landslide disaster vulnerability mapping study in Henan Province:Comparison of different machine learning models[J]. Bulletin of Geological Science and Technology,2025,44(1):101-111. (in Chinese with English abstract
|
[83] |
YANG C,LIU L L,HUANG F M,et al. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples[J]. Gondwana Research,2023,123:198-216. doi: 10.1016/j.gr.2022.05.012
|
[84] |
GOYES-PEÑAFIEL P,HERNANDEZ-ROJAS A. Landslide susceptibility index based on the integration of logistic regression and weights of evidence:A case study in Popayan,Colombia[J]. Engineering Geology,2021,280:105958. doi: 10.1016/j.enggeo.2020.105958
|
[85] |
吴雨辰,周晗旭,车爱兰. 基于粗糙集–神经网络的IBURI地震滑坡易发性研究[J]. 岩石力学与工程学报,2021,40(6):1226-1235.
WU Y C,ZHOU H X,CHE A L. Susceptibility of landslides caused by IBURI earthquake based on rough set-neural network[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1226-1235. (in Chinese with English abstract
|
[86] |
KAVZOGLU T,KUTLUG SAHIN E,COLKESEN I. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm[J]. Engineering Geology,2015,192:101-112. doi: 10.1016/j.enggeo.2015.04.004
|
[87] |
ZHOU X Z,WEN H J,ZHANG Y L,et al. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization[J]. Geoscience Frontiers,2021,12(5):101211. doi: 10.1016/j.gsf.2021.101211
|
[88] |
HONG H Y,LIU J Z,ZHU A X. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble[J]. Science of the Total Environment,2020,718:137231. doi: 10.1016/j.scitotenv.2020.137231
|
[89] |
ARABAMERI A,PRADHAN B,REZAEI K,et al. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms[J]. Journal of Mountain Science,2019,16(3):595-618. doi: 10.1007/s11629-018-5168-y
|
[90] |
CHEN W,CHEN Y Z,TSANGARATOS P,et al. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments[J]. Remote Sensing,2020,12(23):3854. doi: 10.3390/rs12233854
|
[91] |
HUANG F M,ZHANG J,ZHOU C B,et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides,2020,17(1):217-229. doi: 10.1007/s10346-019-01274-9
|
[92] |
TANG Y M,FENG F,GUO Z Z,et al. Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping:A comparative study from the Loess Plateau area in Shanxi (China)[J]. Journal of Cleaner Production,2020,277:124159. doi: 10.1016/j.jclepro.2020.124159
|
[93] |
SUN D L,SHI S X,WEN H J,et al. A hybrid optimization method of factor screening predicated on GeoDetector and random forest for landslide susceptibility mapping[J]. Geomorphology,2021,379:107623. doi: 10.1016/j.geomorph.2021.107623
|
[94] |
PHAM B T,VAN DAO D,ACHARYA T D,et al. Performance assessment of artificial neural network using Chi-square and backward elimination feature selection methods for landslide susceptibility analysis[J]. Environmental Earth Sciences,2021,80(20):686. doi: 10.1007/s12665-021-09998-5
|
[95] |
LUCCHESE L V,DE OLIVEIRA G G,PEDROLLO O C. Attribute selection using correlations and principal components for artificial neural networks employment for landslide susceptibility assessment[J]. Environmental Monitoring and Assessment,2020,192(2):129. doi: 10.1007/s10661-019-7968-0
|
[96] |
ZHU L,WANG G J,HUANG F M,et al. Landslide susceptibility prediction using sparse feature extraction and machine learning models based on GIS and remote sensing[J]. IEEE Geoscience and Remote Sensing Letters,2021,19:3001505.
|
[97] |
刘瑞,李露瑶,杨鑫,等. 基于因子强关联分析方法的滑坡易发性评价[J]. 地球与环境,2021,49(2):198-206.
LIU R,LI L Y,YANG X,et al. Landslide susceptibility mappping based on factor strong correlation analysis method[J]. Earth and Environment,2021,49(2):198-206. (in Chinese with English abstract
|
[98] |
罗路广,裴向军,崔圣华,等. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报,2021,40(11):2306-2319.
LUO L G,PEI X J,CUI S H,et al. Combined selection of susceptibility assessment factors for Jiuzhaigou earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2306-2319. (in Chinese with English abstract
|
[99] |
朱阿兴,闾国年,周成虎,等. 地理相似性:地理学的第三定律?[J]. 地球信息科学学报,2020,22(4):673-679.
ZHU A X,LÜ G N ,ZHOU C H,et al. Geographic similarity:Third law of geography?[J]. Journal of Geo-Information Science,2020,22(4):673-679. (in Chinese with English abstract
|
[100] |
王启盛,熊俊楠,程维明,等. 耦合统计方法、机器学习模型和聚类算法的滑坡易发性评价方法[J]. 地球信息科学学报,2024,26(3):620-637. doi: 10.12082/dqxxkx.2024.230427
WANG Q S,XIONG J N,CHENG W M,et al. Landslide susceptibility mapping methods coupling with statistical methods,machine learning models and clustering algorithms[J]. Journal of Geo-Information Science,2024,26(3):620-637. (in Chinese with English abstract doi: 10.12082/dqxxkx.2024.230427
|
[101] |
孔嘉旭,庄建琦,彭建兵,等. 基于信息量和卷积神经网络的黄土高原滑坡易发性评价[J]. 地球科学,2023,48(5):1711-1729.
KONG J X,ZHUANG J Q,PENG J B,et al. Evaluation of landslide susceptibility in Chinese Loess Plateau based on Ⅳ-RF and Ⅳ-CNN coupling models[J]. Earth Science,2023,48(5):1711-1729. (in Chinese with English abstract
|
[102] |
HUANG F M,YE Z,JIANG S H,et al. Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models[J]. Catena,2021,202:105250. doi: 10.1016/j.catena.2021.105250
|
[103] |
李文彬,范宣梅,黄发明,等. 不同环境因子联接和预测模型的滑坡易发性建模不确定性[J]. 地球科学,2021,46(10):3777-3795.
LI W B,FAN X M,HUANG F M,et al. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science,2021,46(10):3777-3795. (in Chinese with English abstract
|
[104] |
JIANG C C,FAN W,YU N Y,et al. Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model[J]. Science of the Total Environment,2021,783:147040. doi: 10.1016/j.scitotenv.2021.147040
|
[105] |
黄发明,欧阳慰平,蒋水华,等. 考虑机器学习建模中训练/测试集时空划分原则的滑坡易发性预测建模[J]. 地球科学,2024,49(5):1607-1618.
HUANG F M,OUYANG W P,JIANG S H,et al. Landslide susceptibility prediction considering spatio-temporal division principle of training/testing datasets in machine learning models[J]. Earth Science,2024,49(5):1607-1618. (in Chinese with English abstract
|
[106] |
徐胜华,刘纪平,王想红,等. 熵指数融入支持向量机的滑坡灾害易发性评价方法:以陕西省为例[J]. 武汉大学学报(信息科学版),2020,45(8):1214-1222.
XU S H,LIU J P,WANG X H,et al. Landslide susceptibility assessment method incorporating index of entropy based on support vector machine:A case study of Shaanxi Province[J]. Geomatics and Information Science of Wuhan University,2020,45(8):1214-1222. (in Chinese with English abstract
|
[107] |
范强,巨能攀,向喜琼,等. 证据权法在区域滑坡危险性评价中的应用:以贵州省为例[J]. 工程地质学报,2014,22(3):474-481.
FAN Q,JU N P,XIANG X Q,et al. Landslides hazards assessment with weights of evidence:A case study in Guizhou,China[J]. Journal of Engineering Geology,2014,22(3):474-481. (in Chinese with English abstract
|
[108] |
张玘恺,凌斯祥,李晓宁,等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,2020,39(8):1595-1610.
ZHANG Q K,LING S X,LI X N,et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County,Sichuan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1595-1610. (in Chinese with English abstract
|
[109] |
黄发明,石雨,欧阳慰平,等. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测[J]. 土木与环境工程学报(中英文),2022,44(5):16-28. doi: 10.11835/j.issn.2096-6717.2021.254
HUANG F M,SHI Y,OUYANG W P,et al. Landslide susceptibility prediction modeling based on weight of evidence and Chi-square automatic interactive detection decision tree[J]. Journal of Civil and Environmental Engineering,2022,44(5):16-28. (in Chinese with English abstract doi: 10.11835/j.issn.2096-6717.2021.254
|
[110] |
LIMA P,STEGER S,GLADE T. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas:A national-scale assessment for Austria[J]. Landslides,2021,18(11):3531-3546. doi: 10.1007/s10346-021-01693-7
|
[111] |
PANAHI M,GAYEN A,POURGHASEMI H R,et al. Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms[J]. Science of the Total Environment,2020,741:139937. doi: 10.1016/j.scitotenv.2020.139937
|
[112] |
QIN C Z,BAO L L,ZHU A X,et al. Uncertainty due to DEM error in landslide susceptibility mapping[J]. International Journal of Geographical Information Science,2013,27(7):1364-1380. doi: 10.1080/13658816.2013.770515
|
[113] |
CASAGLI N,INTRIERI E,TOFANI V,et al. Landslide detection,monitoring and prediction with remote-sensing techniques[J]. Nature Reviews Earth & Environment,2023,4(1):51-64.
|
[114] |
GOETZ J N,BRENNING A,PETSCHKO H,et al. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling[J]. Computers & Geosciences,2015,81:1-11.
|
[115] |
HUANG F M,MAO D X,JIANG S H,et al. Uncertainties in landslide susceptibility prediction modeling:A review on the incompleteness of landslide inventory and its influence rules[J]. Geoscience Frontiers,2024,15(6):101886. doi: 10.1016/j.gsf.2024.101886
|
[116] |
MALONEY K O,BUCHANAN C,JEPSEN R D,et al. Explainable machine learning improves interpretability in the predictive modeling of biological stream conditions in the Chesapeake Bay Watershed,USA[J]. Journal of Environmental Management,2022,322:116068. doi: 10.1016/j.jenvman.2022.116068
|
[117] |
张锦瑞,汪洋,冯霄,等. 考虑地表形变和土地利用变更的滑坡时空易发性差异分析[J]. 地质科技通报,2024,43(6):184-195.
ZHANG J R,WANG Y,FENG X,et al. Analysis of spatial-temporal variations in landslide susceptibility assessment considering surface deformation and land use dynamics[J]. Bulletin of Geological Science and Technology,2024,43(6):184-195. (in Chinese with English abstract
|
[118] |
崔玉龙,朱路路,徐敏,等. 基于环境因子优化TSES法选择负样本及其在滑坡易发性评价中的应用[J]. 地质科技通报,2024,43(3):192-199.
CUI Y L,ZHU L L,XU M,et al. Optimizing TSES method based on the environmental factors to select negative samples and its application in landslide susceptibility evaluation[J]. Bulletin of Geological Science and Technology,2024,43(3):192-199. (in Chinese with English abstract
|
[119] |
孙德亮,陈丹璐,密长林,等. 基于随机森林−特征递归消除模型的可解释性缓丘岭谷地貌滑坡易发性评价[J]. 地质力学学报,2023,29(2):202-219. doi: 10.12090/j.issn.1006-6616.2022128
SUN D L,CHEN D L,MI C L,et al. Evaluation of landslide susceptibility in the gentle hill-valley areas based on the interpretable random forest-recursive feature elimination model[J]. Journal of Geomechanics,2023,29(2):202-219. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.2022128
|
[120] |
YOUSSEF K,SHAO K,MOON S,et al. Landslide susceptibility modeling by interpretable neural network[J]. Communications Earth & Environment,2023,4:162.
|
[121] |
SUN D L,GU Q Y,WEN H J,et al. Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization[J]. Gondwana Research,2023,123:89-106. doi: 10.1016/j.gr.2022.07.013
|