Citation: | Liu Yang. Response to astronomical forcing of sedimentary record in Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 120-128. doi: 10.19509/j.cnki.dzkq.2020.0313 |
[1] |
王鹏, 赵志刚, 张功成, 等.东海盆地钓鱼岛隆褶带构造演化分析及对西湖凹陷油气勘探的意义[J].地质科技情报, 2011, 30(4):65-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201104009
|
[2] |
赵省民, 张正喜, 吴必豪, 等.东海陆架盆地古近-新近系高分辨率层序[J].地质力学学报, 2002, 8(3):239-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200203007
|
[3] |
侯国伟, 刘金水, 蔡坤, 等.东海丽水凹陷古新统源-汇系统及控砂模式[J].地质科技情报, 2019, 38(2):71-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201902008
|
[4] |
武法东, 陈建渝, 刘从印, 等.东营凹陷第三纪层序地层格架及沉积体系类型[J].现代地质, 1998, 12(4):559-566. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ804.016.htm
|
[5] |
段九春, 赵英杰, 米慧芬.东海陆架盆地南部中生界及古近系层序地层格架[J].洁净煤技术, 2010, 16(6):100-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjmjs201006028
|
[6] |
Hardenbol J, Thierry J, Farley M B, et al.Cretaceous sequence chronostratigraphy[C]//De Graciansky P C, Hardenbol J, Jacquin T, et al.Mesozoic and Cenozoic sequence stratigraphy of European basins: SEPM (Society for Sedimentary Geology).: Spec.Publ., 1998.
|
[7] |
刘景彦, 陈志勇, 林畅松, 等.东海丽水西次凹古新统明月峰组层序:体系域分析及沉积体系展布[J].沉积学报, 2004, 22(3):380-386. http://d.wanfangdata.com.cn/Periodical/cjxb200403002
|
[8] |
Haq B U, Hardenbol J, Vail P R.Chronology of fluctuating sea levels since the Triassic[J].Science, 1987, 235:1156-1167. doi: 10.1126/science.235.4793.1156
|
[9] |
张银国, 葛和平, 杨艳秋, 等.东海陆架盆地丽水凹陷古新统层序地层的划分及控制因素[J].海相油气地质, 2012, 17(3):37-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201203005
|
[10] |
Vail P R, Mitchum R M, Todd J R G, et al.Seismic stratigraphy and global changes of sea level[C]//Payton C E.Seismic stratigraphy-applications to hydrocarbon exploration.: American Association of Petroleum Geologists Memoir, 1977, 26: 49-212.
|
[11] |
陈忠云, 张建培, 张涛, 等.西湖凹陷层序划分及海平面变化响应[J].海洋地质前沿, 2013, 29(9):15-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201309003
|
[12] |
Boulila S, Galbrun B, Miller K G, et al.On the origin of Cenozoic and Mesozoic "third-order" eustatic sequences[J].Earth-Science Reviews, 2011, 109:94-112. doi: 10.1016/j.earscirev.2011.09.003
|
[13] |
Laskar J.Long-term solution for the insolation quantities of the Earth[J].Proceedings of the International Astronomical Union, 2004, 2(14):101-106. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1432476&fulltextType=RA&fileId=S1743921307011404
|
[14] |
Laskar J, Fienga A, Gastineau M, et al.A new orbital solution for the long-term motion of the Earth[J].Astronomy & Astrophysics, 2011, 532(92):784-785. http://arxiv.org/abs/1103.1084
|
[15] |
Abels H A, Hilgen F J, Krijgsman W, et al.Long-period orbital control on middle Miocene global cooling:Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta[J].Paleoceanography, 2005, 20:PA4012.
|
[16] |
Meyers S R, Sageman B B, Pagani M.Resolving Milankovitch:Consideration of signal and noise[J].American Journal of Science, 2008, 308(6):770-786. doi: 10.2475/06.2008.02
|
[17] |
Ruddiman W F.Orbital insolation, ice volume, and greenhouse gases[J].Quaternary Science Reviews, 2003, 22:1597-1629. doi: 10.1016/S0277-3791(03)00087-8
|
[18] |
Li M, Hinnov L A, Huang C, et al.Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J].Nature Communications, 2018, 9(1):1004. doi: 10.1038/s41467-018-03454-y
|
[19] |
Miller K G, Kominz M A, Browning J V, et al.The Phanerozoic record of global sea-level change[J].Science, 2005, 310:1293-1298. doi: 10.1126/science.1116412
|
[20] |
Lourens L J, Hilgen F J.Long-periodic variations in the earth's obliquity and their relation to third-order eustatic cycles and Late Neogene glaciations[J].Quaternary International, 1997, 40:43-52. doi: 10.1016/S1040-6182(96)00060-2
|
[21] |
Zachos J C, Shackleton N J, Revenaugh J S, et al.Climate response to orbital forcing across the Oligocene-Miocene boundary[J].Science, 2001, 292:274-278. doi: 10.1126/science.1058288
|
[22] |
Lourens L J, Sluijs A, Kroon D, et al.Astronomical pacing of late Palaeocene to early Eocene global warming events[J].Nature, 2005, 435:1083-1087. doi: 10.1038/nature03814
|
[23] |
Westerhold T, Röhl U, Laskar J, et al.On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events:Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect[J].Paleoceanography, 2007, 22:1-19. doi: 10.1029/2006PA001322/full
|
[24] |
Matthews R K, Frohlich C, Duffy A.Orbital forcing of global change throughout the Phanerozoic:A possible stratigraphic solution to the eccentricity phase problem[J].Geology, 1997, 25:807. doi: 10.1130/0091-7613(1997)025<0807:OFOGCT>2.3.CO;2
|