Volume 39 Issue 3
May  2020
Turn off MathJax
Article Contents
Liu Yang. Response to astronomical forcing of sedimentary record in Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 120-128. doi: 10.19509/j.cnki.dzkq.2020.0313
Citation: Liu Yang. Response to astronomical forcing of sedimentary record in Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 120-128. doi: 10.19509/j.cnki.dzkq.2020.0313

Response to astronomical forcing of sedimentary record in Xihu Depression, East China Sea Basin

doi: 10.19509/j.cnki.dzkq.2020.0313
  • Received Date: 27 Feb 2019
  • In this study, we have investigated the third-order sequences interpreted by the previous researchers of Paleocene-Eocene in the East China Sea Basin, and believe that the interpretation of the third-order sequences is mainly based on the interpretation of seismic and lithologic changes, which is basically consistent with the previous interpretation of the stratigraphic stages, and cannot truly reflect the characteristics of the third-order sequences driven by the change of sea-level. This paper takes well BSH-1 and its adjacent well NB-25-2-1 in Xihu Depression, East China Sea Basin as the research objects and selects GR logging curve as the paleoclimate alternative index. Based on the theory of cyclostratigraphy, this study, combining with the previous stratigraphic research data, conducted spectrum analysis and time series analysis, and analyzed the astronomical cycle of the two wells. Then, the paper establishes an effective astronomical chronograph and discusses the slope cycle information.The relationship between the 1.2 Ma long period of amplitude modulation and sea level change and the development of the third-order sequence shows that the third-order sequence in East China Sea Basin is controlled by the stable 1.2 Ma slope amplitude modulation period. Finally, a set of absolute astronomical time scale and a set of third-order sequence division plan are formed.

     

  • loading
  • [1]
    王鹏, 赵志刚, 张功成, 等.东海盆地钓鱼岛隆褶带构造演化分析及对西湖凹陷油气勘探的意义[J].地质科技情报, 2011, 30(4):65-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201104009
    [2]
    赵省民, 张正喜, 吴必豪, 等.东海陆架盆地古近-新近系高分辨率层序[J].地质力学学报, 2002, 8(3):239-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200203007
    [3]
    侯国伟, 刘金水, 蔡坤, 等.东海丽水凹陷古新统源-汇系统及控砂模式[J].地质科技情报, 2019, 38(2):71-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201902008
    [4]
    武法东, 陈建渝, 刘从印, 等.东营凹陷第三纪层序地层格架及沉积体系类型[J].现代地质, 1998, 12(4):559-566. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ804.016.htm
    [5]
    段九春, 赵英杰, 米慧芬.东海陆架盆地南部中生界及古近系层序地层格架[J].洁净煤技术, 2010, 16(6):100-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjmjs201006028
    [6]
    Hardenbol J, Thierry J, Farley M B, et al.Cretaceous sequence chronostratigraphy[C]//De Graciansky P C, Hardenbol J, Jacquin T, et al.Mesozoic and Cenozoic sequence stratigraphy of European basins: SEPM (Society for Sedimentary Geology).: Spec.Publ., 1998.
    [7]
    刘景彦, 陈志勇, 林畅松, 等.东海丽水西次凹古新统明月峰组层序:体系域分析及沉积体系展布[J].沉积学报, 2004, 22(3):380-386. http://d.wanfangdata.com.cn/Periodical/cjxb200403002
    [8]
    Haq B U, Hardenbol J, Vail P R.Chronology of fluctuating sea levels since the Triassic[J].Science, 1987, 235:1156-1167. doi: 10.1126/science.235.4793.1156
    [9]
    张银国, 葛和平, 杨艳秋, 等.东海陆架盆地丽水凹陷古新统层序地层的划分及控制因素[J].海相油气地质, 2012, 17(3):37-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201203005
    [10]
    Vail P R, Mitchum R M, Todd J R G, et al.Seismic stratigraphy and global changes of sea level[C]//Payton C E.Seismic stratigraphy-applications to hydrocarbon exploration.: American Association of Petroleum Geologists Memoir, 1977, 26: 49-212.
    [11]
    陈忠云, 张建培, 张涛, 等.西湖凹陷层序划分及海平面变化响应[J].海洋地质前沿, 2013, 29(9):15-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201309003
    [12]
    Boulila S, Galbrun B, Miller K G, et al.On the origin of Cenozoic and Mesozoic "third-order" eustatic sequences[J].Earth-Science Reviews, 2011, 109:94-112. doi: 10.1016/j.earscirev.2011.09.003
    [13]
    Laskar J.Long-term solution for the insolation quantities of the Earth[J].Proceedings of the International Astronomical Union, 2004, 2(14):101-106. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1432476&fulltextType=RA&fileId=S1743921307011404
    [14]
    Laskar J, Fienga A, Gastineau M, et al.A new orbital solution for the long-term motion of the Earth[J].Astronomy & Astrophysics, 2011, 532(92):784-785. http://arxiv.org/abs/1103.1084
    [15]
    Abels H A, Hilgen F J, Krijgsman W, et al.Long-period orbital control on middle Miocene global cooling:Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta[J].Paleoceanography, 2005, 20:PA4012.
    [16]
    Meyers S R, Sageman B B, Pagani M.Resolving Milankovitch:Consideration of signal and noise[J].American Journal of Science, 2008, 308(6):770-786. doi: 10.2475/06.2008.02
    [17]
    Ruddiman W F.Orbital insolation, ice volume, and greenhouse gases[J].Quaternary Science Reviews, 2003, 22:1597-1629. doi: 10.1016/S0277-3791(03)00087-8
    [18]
    Li M, Hinnov L A, Huang C, et al.Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J].Nature Communications, 2018, 9(1):1004. doi: 10.1038/s41467-018-03454-y
    [19]
    Miller K G, Kominz M A, Browning J V, et al.The Phanerozoic record of global sea-level change[J].Science, 2005, 310:1293-1298. doi: 10.1126/science.1116412
    [20]
    Lourens L J, Hilgen F J.Long-periodic variations in the earth's obliquity and their relation to third-order eustatic cycles and Late Neogene glaciations[J].Quaternary International, 1997, 40:43-52. doi: 10.1016/S1040-6182(96)00060-2
    [21]
    Zachos J C, Shackleton N J, Revenaugh J S, et al.Climate response to orbital forcing across the Oligocene-Miocene boundary[J].Science, 2001, 292:274-278. doi: 10.1126/science.1058288
    [22]
    Lourens L J, Sluijs A, Kroon D, et al.Astronomical pacing of late Palaeocene to early Eocene global warming events[J].Nature, 2005, 435:1083-1087. doi: 10.1038/nature03814
    [23]
    Westerhold T, Röhl U, Laskar J, et al.On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events:Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect[J].Paleoceanography, 2007, 22:1-19. doi: 10.1029/2006PA001322/full
    [24]
    Matthews R K, Frohlich C, Duffy A.Orbital forcing of global change throughout the Phanerozoic:A possible stratigraphic solution to the eccentricity phase problem[J].Geology, 1997, 25:807. doi: 10.1130/0091-7613(1997)025<0807:OFOGCT>2.3.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(554) PDF Downloads(513) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return