Volume 39 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Zhang Tongyao, Hao Peng. Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 117-124. doi: 10.19509/j.cnki.dzkq.2020.0415
Citation: Zhang Tongyao, Hao Peng. Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 117-124. doi: 10.19509/j.cnki.dzkq.2020.0415

Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong Sag

doi: 10.19509/j.cnki.dzkq.2020.0415
  • Received Date: 02 Mar 2020
  • With the application of automatic mineral quantitative identification system (QEMSCAN), modular automated processing system (MPAS), multi-scale micro CT, thin section identification, constant-rate mercury injection and other experimental techniques, the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite of Kongdian Formation in the Bozhong Sag were characterized in two and three dimensions, and the influencing factors of the permeability of glutenite reservoir were studied in detail. The experimental results show that the glutenite in the study area has millimeter, micron and nanometer pores. For the samples with relatively large porosity, there are relatively more interparticle pores and interparticle dissolution pores in the reservoir. On the basis of the three-dimensional pore-throat network model, the most part of the pore radius ranges from 0.3 to 10 μm and the roar channel radius mainly ranges from 0.5 to 8.0 μm. The pore-throat distribution is mainly three forms: banded, contiguous and isolated. The pore throats of reservoirs with good reservoir properties are mostly continuous in three-dimensional space, and the reservoirs with relatively poor permeability contain more isolated large pores. The fluid mobility of porous reservoir is closely related to throat radius, pore-throat shape, coordination number and other parameters. Fractures improve the physical properties of glutenite obviously, and also provide a channel for the acid solution to the reservoir and promotes the formation of dissolution pores. Comprehensive study showed that the fluid flow of the glutenite in the Bozhong Sag is controlled by the fracture and the pore-throat connectivity. The cementation of clay and carbonate minerals in the reservoir has an important influence on the pore structure and permeability.

     

  • loading
  • [1]
    Nelson P H.Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3):329-340. doi: 10.1306/10240808059
    [2]
    纪友亮.油气储层地质学[M].北京:石油工业出版社, 2015.
    [3]
    Zhang L, Lu S, Xiao D, et al.Pore structure characteristics of tight sandstones in the northern Songliao Basin, China[J]. Marine and Petroleum Geology, 2017, 88:170-180. doi: 10.1016/j.marpetgeo.2017.08.005
    [4]
    Andrä H, Combaret N, Dvorkin J, et al.Digital rock physics benchmarks, Part Ⅰ: Imaging and segmentation[J]. Computers & Geosciences, 2013, 50:25-32. http://www.sciencedirect.com/science/article/pii/S0098300412003147
    [5]
    Mayo S, Josh M, Nesterests Y, et al.Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal[J]. Fuel, 2015, 154:167-173. doi: 10.1016/j.fuel.2015.03.046
    [6]
    Loucks R G, Reed R M, Ruppel S C, et al.Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861. doi: 10.2110/jsr.2009.092
    [7]
    Al-Kharusi A S, Blunt M J.Network extraction from sandstone and carbonate pore space images[J]. Journal of Petroleum Science & Engineering, 2007, 56(4): 219-231. http://www.sciencedirect.com/science/article/pii/S092041050600204X
    [8]
    Dewanckele J, Kock T D, Boone M A, et al.4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT[J]. Science of the Total Environment, 2012, 416:436-448. doi: 10.1016/j.scitotenv.2011.11.018
    [9]
    Tariq F, Haswell R, Lee P D, et al.Characterization of hierarchical pore structures in ceramics using multiscale tomography[J]. Acta Materialia, 2011, 59(5):2109-2120. doi: 10.1016/j.actamat.2010.12.012
    [10]
    Sakdinawat A, Attwood D.Nanoscale X-ray imaging[J]. Nature Photonics, 2010, 4(12):840-848. doi: 10.1038/nphoton.2010.267
    [11]
    李易霖, 张云峰, 尹淑丽, 等.致密砂岩储集空间多尺度表征:以松辽盆地齐家地区高台子油层为例[J].石油与天然气地质, 2016, 37(6):915-922. http://www.cqvip.com/QK/95357X/201606/671030717.html
    [12]
    李易霖, 张云峰, 丛琳, 等.X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用:以大安油田扶余油层为例[J].吉林大学学报:地球科学版, 2016, 46(2):379-387. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201602007.htm
    [13]
    赵丁丁, 孙卫, 杜堃, 等.特低-超低渗透砂岩储层微观水驱油特征及影响因素:以鄂尔多斯盆地马岭油田长81储层为例[J].地质科技情报, 2019, 38(3):163-170. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201903016.htm
    [14]
    谢升洪, 李伟, 冷福, 等.致密砂岩储层可动流体赋存规律及制约因素研究:以鄂尔多斯盆地华庆油田长6段储层为例[J].地质科技情报, 2019, 38(5):105-114. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201905011.htm
    [15]
    刘春, 张荣虎, 张惠良, 等.致密砂岩储层微孔隙成因类型及地质意义:以库车前陆冲断带超深层储层为例[J].石油学报, 2017, 38(2):36-45. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201702003.htm
    [16]
    林潼, 冉启贵, 魏红兴, 等.库车坳陷迪北地区致密砂岩孔喉形态特征及其对储层的影响[J].石油实验地质, 2015, 37(6):698-703. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201506004
    [17]
    朱伟林, 米立军, 龚再升, 等.渤海海域油气成藏与勘探[M].北京:科学出版社, 2009.
    [18]
    魏刚, 杨海风, 冯冲, 等.渤海海域沙南凹陷沙二段储层成岩作用及其对储集层的影响[J].地质科技情报, 2017, 36(4):160-165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704020
    [19]
    王清斌, 牛成民, 刘晓健, 等.渤中凹陷深层砂砾岩气藏油气充注与储层致密化[J].天然气工业, 2019, 39(5):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201905003
    [20]
    李欢, 王清斌, 庞小军, 等.致密砂砾岩储层裂缝形成及储层评价:以黄河口凹陷沙二段为例[J].地质科技情报, 2019, 38(1):182-191. http://www.cqvip.com/QK/93477A/20191/68907581504849574849484957.html
    [21]
    Dong H, Blunt M J.Pore-network extraction from micro-computerized-tomography images[J]. Physical Review E, 2009, 80(3):036307. doi: 10.1103/PhysRevE.80.036307
    [22]
    Dong H.Micor-CT imaging and pore network extraction[D]. London: Imperial College, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(569) PDF Downloads(1691) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return