Citation: | Wu Shuanghong, Liu Quan, Qi Junjie, Qiu Pengxiang, Yang Huichen, Tao Ran, Thomas Ptak, Hu Rui. Characterization of the heterogeneity of a fractured aquifer based on hydraulic travel time inversion[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 175-183. doi: 10.19509/j.cnki.dzkq.2021.0015 |
[1] |
郭绪磊, 朱静静, 陈乾龙, 等.新型地下水流速流向测量技术及其在岩溶区调查中的应用[J].地质科技情报, 2019, 38(1):249-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901027.htm
|
[2] |
王佳琪, 马瑞, 孙自永.地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展[J].地质科技情报, 2019(4):270-280. doi: 10.3969/j.issn.1009-6248.2019.04.022
|
[3] |
傅丽平, 牟中海, 张国成, 等.基于岩石物理相的储层非均质性研究:以昆北油田切12井区E3-1为例[J].地质科技情报, 2018, 37(5):114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805016.htm
|
[4] |
刘荷蕾, 马宁.裂隙网络非连续介质渗流场与温度场耦合分析研究[J].黑龙江水利科技, 2018, 46(7):27-29. doi: 10.3969/j.issn.1007-7596.2018.07.008
|
[5] |
王生维, 陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报, 1995, 14(1):53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ501.010.htm
|
[6] |
李东炎, 戚俊杰, 胡睿.基于抽水试验的地下含水层水动力学参数分析[J].武汉大学学报:工学版, 2019, 52(6):482-488. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201906002.htm
|
[7] |
Ji S H, Nicholl M J, Glass R J, et al.Influence of simple fracture intersections with differing aperture on density-driven immiscible flow:Wetting versus nonwetting flows[J].Water Resources Research, 2006, 42(10):730-732.
|
[8] |
Bour O, Davy P.On the connectivity of three-dimensional fault networks[J].Water Resources Research, 1998, 34(10):2611-2622. doi: 10.1029/98WR01861
|
[9] |
Neuman S P.Trends, prospects and challenges in quantifying flow and transport through fractured rocks[J].Hydrogeology Journal, 2005, 13(1):124-147. doi: 10.1007/s10040-004-0397-2
|
[10] |
Wu C M.Traditional analysis of aquifer tests:Comparing apples to oranges?[J].Water Resources Research, 2005, 41(9):W09402.1-W09402.12 doi: 10.1029/2004WR003717/full
|
[11] |
Blessent D, Therrien R, Lemieux J M.Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach[J].Water Resources Research, 2011, 47(12):W12530.1-W12530.19.
|
[12] |
Illman W A.Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks[J].Groundwater, 2013, 52(5):659-684.
|
[13] |
Ando K, Kostner A, Neuman S.Stochastic continuum modeling of flow and transport in a crystalline rock mass:Fanay-Augres, France, revisited[J].Hydrogeology Journal, 2003, 11(5):521-535. doi: 10.1007/s10040-003-0286-0
|
[14] |
朱珺峰, 叶天齐, 毛德强.运用水力层析法刻画潜水含水层的非均质性[J].南京大学学报:自然科学, 2011, 47(3):253-264. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201103004.htm
|
[15] |
郝永红, 叶天齐, 韩宝平, 等.运用水力层析法对含水层裂隙带成像[J].水文地质工程地质, 2008(6):12-17. doi: 10.3969/j.issn.1000-3665.2008.06.004
|
[16] |
王文梅, 孙蓉琳.水力层析法刻画非均质含水层K与S采样时间优化设计[J].地质科技情报, 2015, 34(3):165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503023.htm
|
[17] |
Yeh T C J, Liu S.Hydraulic tomography:Development of a new aquifer test method[J].Water Resources Research, 2000, 36(8):1-9. doi: 10.1029/2000WR900114
|
[18] |
Zhu J, Yeh T C J.Characterization of aquifer heterogeneity using transient hydraulic tomography[J].Water Resources Research, 2005, 41(7):W07028.1-W07028.10.
|
[19] |
Sharmeen R, Illman W A, Berg S J, et al.Transient hydraulic tomography in a fractured dolostone:Laboratory rock block experiments[J].Water Resources Research, 2012, 48(10):W10532.1-W10532.20.
|
[20] |
董艳辉, 李国敏, 赵春虎, 等.应用水力层析法刻画含水层非均质性[J].工程勘察, 2009, 37(12):58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200912012.htm
|
[21] |
蒋立群, 孙蓉琳, 王文梅, 等.水力层析法与克立金法估算非均质含水层渗透系数场比较[J].地球科学, 2017, 42(2):307-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201702012.htm
|
[22] |
Vasco D W, Keers H, Karasaki K.Estimation of reservoir properties using transient pressure data:An asymptotic approach[J].Water Resources Research, 2000, 36(12):11-18. doi: 10.1029/2000WR900179
|
[23] |
Bauchler R, Liedl R, Dietrich P.A travel time based hydraulic tomographic approach[J].Water Resources Research, 2003, 39(12):21-28. doi: 10.1029/2003WR002262
|
[24] |
Brauchler R, Hu R, Dietrich P, et al.A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography[J].Water Resources Research, 2011, 47(3):37-48. doi: 10.1029/2010WR009635
|
[25] |
Hu R, Brauchler R, Herold M, et al.Hydraulic tomography analog outcrop study:Combining travel time and steady shape inversion[J].Journal of Hydrology, 2011, 409(1/2):350-362. http://www.sciencedirect.com/science/article/pii/S0022169411005774
|
[26] |
Read T, Bour O, Bense V, et al.Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing[J].Geophysical Research Letters, 2013, 40(10):2055-2059. doi: 10.1002/grl.50397
|
[27] |
Leaf A T, Hart D J, Bahr J M.Active thermal tracer tests for improved hydrostratigraphic characterization[J].Groundwater, 2012, 50(5):726-735. doi: 10.1111/j.1745-6584.2012.00913.x
|
[28] |
Klepikova M V, Borgne T L, Bour O, et al.Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media[J].Journal of Hydrology, 2014, 512:549-562. doi: 10.1016/j.jhydrol.2014.03.018
|
[29] |
Qiu P, Hu R, Hu L, et al.A numerical study on travel time based hydraulic tomography using the sirt algorithm with cimmino iteration[J].Water, 2019, 11(5):31-38. http://www.researchgate.net/publication/332771424_A_Numerical_Study_on_Travel_Time_Based_Hydraulic_Tomography_Using_the_SIRT_Algorithm_with_Cimmino_Iteration
|
[30] |
Ma Rui, Zheng Chunmiao.Effects of density and viscosity in modeling heat as a groundwater tracer[J].Groundwater, 2010, 48(3):380-389.
|
[31] |
Anderson M P.Heat as a ground water tracer[J].Groundwater, 2005, 43(6):951-968. doi: 10.1111/j.1745-6584.2005.00052.x
|
[32] |
薛禹群.地下水动力学[M].北京:地质出版社, 1997.
|
[33] |
周志芳, 汤瑞凉, 汪斌.基于抽水试验资料确定含水层水文地质参数[J].河海大学学报:自然科学版, 1999(3):5-8. doi: 10.3321/j.issn:1000-1980.1999.03.002
|
[34] |
Yang H, Hu R, Qiu P, et al.Application of wavelet de-noising for travel-time based hydraulic tomography[J].Water, 2020, 12(6):41-48. http://www.researchgate.net/publication/341763315_Application_of_Wavelet_De-Noising_for_Travel-Time_Based_Hydraulic_Tomography
|