Volume 40 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Wu Shuanghong, Liu Quan, Qi Junjie, Qiu Pengxiang, Yang Huichen, Tao Ran, Thomas Ptak, Hu Rui. Characterization of the heterogeneity of a fractured aquifer based on hydraulic travel time inversion[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 175-183. doi: 10.19509/j.cnki.dzkq.2021.0015
Citation: Wu Shuanghong, Liu Quan, Qi Junjie, Qiu Pengxiang, Yang Huichen, Tao Ran, Thomas Ptak, Hu Rui. Characterization of the heterogeneity of a fractured aquifer based on hydraulic travel time inversion[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 175-183. doi: 10.19509/j.cnki.dzkq.2021.0015

Characterization of the heterogeneity of a fractured aquifer based on hydraulic travel time inversion

doi: 10.19509/j.cnki.dzkq.2021.0015
  • Received Date: 20 Feb 2020
  • The spatial distribution of aquifer hydraulic parameters is an important and basic factor to study groundwater seepage, groundwater pollutant transport processes and many other groundwater related problems.However, due to the limitation of conventional exploration technology, the spatial heterogeneity of aquifer hydraulic parameters cannot be described accurately and intuitively.Especially for fractured aquifers, the heterogeneity of hydraulic parameters is much stronger.In order to solve this problem, this study attempts to characterize the hydraulic properties of a fractured aquifer by using travel time based hydraulic tomography.Firstly, the head data at 8 different depths (receivers) in the observation well are recorded through 64 multi-level short-term pumping tests at 8 pumping intervals (sources) in the pumping well with help of double packers performed in Goettingen Germany.All these 64 head response data are used to calculate the hydraulic parameters (K and Ss) with Jacobian analytical solution.Subsequently, the derived hydraulic travel times between each source and receiver are utilized to obtain the hydraulic diffusivity distribution based on hydraulic travel time inversion.For the validation, the inversion results are finally compared with the results from Jacobian analytical solution and thermal tracer test.It shows that the estimated parameters of analytical solution indicate the vertical heterogeneity, but it cannot describe the spatial distribution of these parameters between wells.Results of thermal tracer test have proven the plausibility of the travel time based hydraulic tomography for the characterization of the fractured aquifer.

     

  • loading
  • [1]
    郭绪磊, 朱静静, 陈乾龙, 等.新型地下水流速流向测量技术及其在岩溶区调查中的应用[J].地质科技情报, 2019, 38(1):249-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901027.htm
    [2]
    王佳琪, 马瑞, 孙自永.地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展[J].地质科技情报, 2019(4):270-280. doi: 10.3969/j.issn.1009-6248.2019.04.022
    [3]
    傅丽平, 牟中海, 张国成, 等.基于岩石物理相的储层非均质性研究:以昆北油田切12井区E3-1为例[J].地质科技情报, 2018, 37(5):114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805016.htm
    [4]
    刘荷蕾, 马宁.裂隙网络非连续介质渗流场与温度场耦合分析研究[J].黑龙江水利科技, 2018, 46(7):27-29. doi: 10.3969/j.issn.1007-7596.2018.07.008
    [5]
    王生维, 陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报, 1995, 14(1):53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ501.010.htm
    [6]
    李东炎, 戚俊杰, 胡睿.基于抽水试验的地下含水层水动力学参数分析[J].武汉大学学报:工学版, 2019, 52(6):482-488. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201906002.htm
    [7]
    Ji S H, Nicholl M J, Glass R J, et al.Influence of simple fracture intersections with differing aperture on density-driven immiscible flow:Wetting versus nonwetting flows[J].Water Resources Research, 2006, 42(10):730-732.
    [8]
    Bour O, Davy P.On the connectivity of three-dimensional fault networks[J].Water Resources Research, 1998, 34(10):2611-2622. doi: 10.1029/98WR01861
    [9]
    Neuman S P.Trends, prospects and challenges in quantifying flow and transport through fractured rocks[J].Hydrogeology Journal, 2005, 13(1):124-147. doi: 10.1007/s10040-004-0397-2
    [10]
    Wu C M.Traditional analysis of aquifer tests:Comparing apples to oranges?[J].Water Resources Research, 2005, 41(9):W09402.1-W09402.12 doi: 10.1029/2004WR003717/full
    [11]
    Blessent D, Therrien R, Lemieux J M.Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach[J].Water Resources Research, 2011, 47(12):W12530.1-W12530.19.
    [12]
    Illman W A.Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks[J].Groundwater, 2013, 52(5):659-684.
    [13]
    Ando K, Kostner A, Neuman S.Stochastic continuum modeling of flow and transport in a crystalline rock mass:Fanay-Augres, France, revisited[J].Hydrogeology Journal, 2003, 11(5):521-535. doi: 10.1007/s10040-003-0286-0
    [14]
    朱珺峰, 叶天齐, 毛德强.运用水力层析法刻画潜水含水层的非均质性[J].南京大学学报:自然科学, 2011, 47(3):253-264. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201103004.htm
    [15]
    郝永红, 叶天齐, 韩宝平, 等.运用水力层析法对含水层裂隙带成像[J].水文地质工程地质, 2008(6):12-17. doi: 10.3969/j.issn.1000-3665.2008.06.004
    [16]
    王文梅, 孙蓉琳.水力层析法刻画非均质含水层KS采样时间优化设计[J].地质科技情报, 2015, 34(3):165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503023.htm
    [17]
    Yeh T C J, Liu S.Hydraulic tomography:Development of a new aquifer test method[J].Water Resources Research, 2000, 36(8):1-9. doi: 10.1029/2000WR900114
    [18]
    Zhu J, Yeh T C J.Characterization of aquifer heterogeneity using transient hydraulic tomography[J].Water Resources Research, 2005, 41(7):W07028.1-W07028.10.
    [19]
    Sharmeen R, Illman W A, Berg S J, et al.Transient hydraulic tomography in a fractured dolostone:Laboratory rock block experiments[J].Water Resources Research, 2012, 48(10):W10532.1-W10532.20.
    [20]
    董艳辉, 李国敏, 赵春虎, 等.应用水力层析法刻画含水层非均质性[J].工程勘察, 2009, 37(12):58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200912012.htm
    [21]
    蒋立群, 孙蓉琳, 王文梅, 等.水力层析法与克立金法估算非均质含水层渗透系数场比较[J].地球科学, 2017, 42(2):307-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201702012.htm
    [22]
    Vasco D W, Keers H, Karasaki K.Estimation of reservoir properties using transient pressure data:An asymptotic approach[J].Water Resources Research, 2000, 36(12):11-18. doi: 10.1029/2000WR900179
    [23]
    Bauchler R, Liedl R, Dietrich P.A travel time based hydraulic tomographic approach[J].Water Resources Research, 2003, 39(12):21-28. doi: 10.1029/2003WR002262
    [24]
    Brauchler R, Hu R, Dietrich P, et al.A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography[J].Water Resources Research, 2011, 47(3):37-48. doi: 10.1029/2010WR009635
    [25]
    Hu R, Brauchler R, Herold M, et al.Hydraulic tomography analog outcrop study:Combining travel time and steady shape inversion[J].Journal of Hydrology, 2011, 409(1/2):350-362. http://www.sciencedirect.com/science/article/pii/S0022169411005774
    [26]
    Read T, Bour O, Bense V, et al.Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing[J].Geophysical Research Letters, 2013, 40(10):2055-2059. doi: 10.1002/grl.50397
    [27]
    Leaf A T, Hart D J, Bahr J M.Active thermal tracer tests for improved hydrostratigraphic characterization[J].Groundwater, 2012, 50(5):726-735. doi: 10.1111/j.1745-6584.2012.00913.x
    [28]
    Klepikova M V, Borgne T L, Bour O, et al.Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media[J].Journal of Hydrology, 2014, 512:549-562. doi: 10.1016/j.jhydrol.2014.03.018
    [29]
    Qiu P, Hu R, Hu L, et al.A numerical study on travel time based hydraulic tomography using the sirt algorithm with cimmino iteration[J].Water, 2019, 11(5):31-38. http://www.researchgate.net/publication/332771424_A_Numerical_Study_on_Travel_Time_Based_Hydraulic_Tomography_Using_the_SIRT_Algorithm_with_Cimmino_Iteration
    [30]
    Ma Rui, Zheng Chunmiao.Effects of density and viscosity in modeling heat as a groundwater tracer[J].Groundwater, 2010, 48(3):380-389.
    [31]
    Anderson M P.Heat as a ground water tracer[J].Groundwater, 2005, 43(6):951-968. doi: 10.1111/j.1745-6584.2005.00052.x
    [32]
    薛禹群.地下水动力学[M].北京:地质出版社, 1997.
    [33]
    周志芳, 汤瑞凉, 汪斌.基于抽水试验资料确定含水层水文地质参数[J].河海大学学报:自然科学版, 1999(3):5-8. doi: 10.3321/j.issn:1000-1980.1999.03.002
    [34]
    Yang H, Hu R, Qiu P, et al.Application of wavelet de-noising for travel-time based hydraulic tomography[J].Water, 2020, 12(6):41-48. http://www.researchgate.net/publication/341763315_Application_of_Wavelet_De-Noising_for_Travel-Time_Based_Hydraulic_Tomography
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(618) PDF Downloads(5038) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return