Volume 40 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Zhang Fu, Huang Yi, Lan Baofeng, Li Long, Liu Ting, Liu Rui, Jiang Dingchuan. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016
Citation: Zhang Fu, Huang Yi, Lan Baofeng, Li Long, Liu Ting, Liu Rui, Jiang Dingchuan. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016

Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area

doi: 10.19509/j.cnki.dzkq.2021.0016
  • Received Date: 21 Nov 2019
  • The complex tectonic deformation zone in the east of the Sichuan Basin has a great potential of shale-gas resources, but has not been commercially exploited yet.This paper utilizes the mineralogical, organic chemical, and petrologic data of the Wufeng Formation-Longmaxi Formation shale cores, which was deposited in the transition zone of deep-shallow continental shelf and is currently located on the Zheng'an area in the complex tectonic deformation zone, to uncover the characteristics and main controlling factors of gas-shale reservoir in the tectonic deformation zone.The Wufeng Formation-Longmaxi Formation shale samples in the Zheng'an area have a high quartz component, which ranges from 60% to 80% and contributes a high brittleness index.Quartz in the Wufeng Formation-Longmaxi Formation shale is dominant by inorganic origins, including the primary clastic quartz deposition and the secondary quartz from clay diagenesis.The cracking of primary clastic quartz grains or bending of laminated clay under tectonic compaction increases pore space; whereas the filling of secondary quartz into the pore space between mineral grains decreases the bulk porosity.The Wufeng Formation-Longmaxi Formation shale samples in the Zheng'an area have a total organic carbon(TOC) content up to 5.8%, a content of amorphous organic matter more than 80%, and a bitumen reflectance of 2.6%-3.1%.The cracking of organic matter generated number of organic pores, which improved the bulk porosity first and then was compacted and collapsed to be long and narrow polygons.

     

  • loading
  • [1]
    Hao F, Zou H, Lu Y.Mechanisms of shale gas storage:Implications for shale gas exploration in China[J].AAPG Bulletin, 2013, 97(8):1325-1346. doi: 10.1306/02141312091
    [2]
    邹才能, 董大忠, 王玉满, 等.中国页岩气特征、挑战及前景:二[J].石油勘探与开发, 2016, 43(2):166-178. doi: 10.11698/PED.2016.02.02
    [3]
    魏威, 王飞宇.页岩油气资源体系成藏控制因素与储层特征[J].地质科技情报, 2014, 33(1):150-156. doi: 10.3969/j.issn.1009-6248.2014.01.012
    [4]
    郭彤楼, 刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示:以四川盆地东部盆缘JY1井为例[J].天然气地球科学, 2013, 24(4):643-651. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htm
    [5]
    马永生, 蔡勋育, 赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发, 2018, 45(4):561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
    [6]
    赵文智, 李建忠, 杨涛, 等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发, 2016, 43(4):1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
    [7]
    胡晨林, 张元福, 王志峰, 等.贵州北部龙马溪组页岩特征及页岩气勘探前景[J].特种油气藏, 2014, 21(4):44-47, 153. doi: 10.3969/j.issn.1006-6535.2014.04.010
    [8]
    程璇, 徐尚, 郝芳, 等.松辽盆地嫩江组富有机质页岩有机孔隙成因[J].地质科技情报, 2019, 38(4):62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904008.htm
    [9]
    Milliken K L, Rudnicki M, Awwiller D N, et al.Organic matter-hosted pore system, Marcellus Formation(Devonian), Pennsylvania[J].AAPG Bulletin, 2013, 97(2):177-200. doi: 10.1306/07231212048
    [10]
    Baruch E T, Kennedy M J, Löhr S C, et al.Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation(McArthur Basin, Australia)[J].AAPG Bulletin, 2015, 99(9):1745-1770. doi: 10.1306/04061514181
    [11]
    徐勇, 吕成福, 陈国俊, 等.川东南地区志留系龙马溪组页岩孔隙结构特征[J].地质科技情报, 2015, 34(6):108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506015.htm
    [12]
    翟刚毅, 包书景, 庞飞, 等.贵州遵义地区安场向斜"四层楼"页岩油气成藏模式研究[J].中国地质, 2017, 44(1):1-12. doi: 10.3969/j.issn.1006-9372.2017.01.001
    [13]
    吴小力, 李荣西, 李尚儒, 等.下扬子地区海陆过渡相页岩气成藏条件与主控因素:以萍乐坳陷二叠系乐平组为例[J].地质科技情报, 2018, 37(1):160-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801022.htm
    [14]
    梅廉夫, 戴少武, 沈传波, 等.中、下扬子区中、新生代陆内对冲带的形成及解体[J].地质科技情报, 2008, 27(4):1-7, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200804002.htm
    [15]
    雷子慧, 赵安坤, 余谦, 等.贵州北部安场向斜下志留统龙马溪组页岩气保存条件[J].地质科技情报, 2016, 35(4):121-127. doi: 10.3969/j.issn.1009-6248.2016.04.002
    [16]
    张浩然, 姜华, 陈志勇, 等.四川盆地及周缘地区加里东运动幕次研究现状综述[J].地质科技通报, 2020, 39(5):118-126. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10057.shtml
    [17]
    苗凤彬, 彭中勤, 汪宗欣, 等.雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J].地质科技通报, 2020, 39(2):31-42. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml
    [18]
    Rafael F M, Martin F.Standardisation, calibration and correlation of the Kübler-index and the vitrinite/bituminite reflectance:An inter-laboratory and field related study[J].Swiss Journal of Geosciences, 2012, 105(2):153-170. doi: 10.1007/s00015-012-0110-8
    [19]
    李博, 于炳松, 史淼.富有机质页岩有机质孔隙度研究:以黔西北下志留统五峰-龙马溪组为例[J].矿物岩石, 2019, 39(1):92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201901011.htm
    [20]
    张鹏, 黄宇琪, 张金川, 等.黔西北五峰组-龙马溪组页岩气成藏条件综合评价[J].山东科技大学学报:自然科学版, 2019, 38(3):25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201903003.htm
    [21]
    王超, 张柏桥, 陆永潮, 等.焦石坝地区五峰组-龙马溪组一段页岩岩相展布特征及发育主控因素[J].石油学报, 2018, 39(6):631-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201806003.htm
    [22]
    杨锐, 何生, 胡东风, 等.焦石坝地区五峰组-龙马溪组页岩孔隙结构特征及其主控因素[J].地质科技情报, 2015, 34(5):105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505017.htm
    [23]
    张晓明, 石万忠, 徐清海, 等.四川盆地焦石坝地区页岩气储层特征及控制因素[J].石油学报, 2015, 36(8):926-939, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm
    [24]
    钟城, 秦启荣, 周吉羚, 等.川东南丁山地区龙马溪组富有机质页岩脆性评价[J].地质科技情报, 2018, 37(4):167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804023.htm
    [25]
    Lu Y, Hao F, Lu Y, et al.Lithofacies and depositional mechanism of the Ordovician-Silurian Wufeng-Longmaxi organic-rich shales in the Upper Yangtze area, southern China[J].AAPG Bulletin, 2020, 104(1):97-129. http://www.researchgate.net/publication/340443915_Lithofacies_and_depositional_mechanisms_of_the_Ordovician-Silurian_Wufeng-Longmaxi_organic-rich_shales_in_the_Upper_Yangtze_area_southern_China
    [26]
    孙川翔, 聂海宽, 刘光祥, 等.石英矿物类型及其对页岩气富集开采的控制:以四川盆地及其周缘五峰组-龙马溪组为例[J].地球科学, 2019, 44(11):3692-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911009.htm
    [27]
    葛明娜, 庞飞, 包书景.贵州遵义五峰组-龙马溪组页岩微观孔隙特征及其对含气性控制:以安页1井为例[J].石油实验地质, 2019, 41(1):23-30.
    [28]
    申宝剑, 仰云峰, 腾格尔, 等.四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨:以焦页1井五峰-龙马溪组为例[J].石油实验地质, 2016, 38(4):480-488, 495. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604010.htm
    [29]
    Liu R, Hao F, Engelder T, et al.Influence of tectonic exhumation on porosity of Wufeng-Longmaxi shale in the Fuling gas field of the eastern Sichuan Basin, China[J].AAPG Bulletin, 2020, 104(4):939-959. doi: 10.1306/08161918071
    [30]
    Hu H, Hao F, Lin J, et al.Organic matter-hosted pore system in the Wufeng-Longmaxi(O3w-S11) shale, Jiaoshiba area, eastern Sichuan Basin, China[J].International Journal of Coal Geology, 2017, 173:40-50. doi: 10.1016/j.coal.2017.02.004
    [31]
    Curtis M E, Cardott B J, Sondergeld C H, et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].International Journal of Coal Geology, 2012, 103:26-31. doi: 10.1016/j.coal.2012.08.004
    [32]
    Han Y, Horsfield B, Wirth R, et al.Oil retention and porosity evolution in organic-rich shales[J].AAPG Bulletin, 2017, 101(6):807-827. doi: 10.1306/09221616069
    [33]
    Mastalerz M, Schimmelmann A, Drobniak A, et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97(10):1621-1643. doi: 10.1306/04011312194
    [34]
    Hsuü K J, Shu S, Jiliang L, et al.Mesozoic overthrust tectonics in South China[J].Geology, 1988, 16(5):418-421. doi: 10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2
    [35]
    Yan D P, Zhou M F, Song H L, et al.Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block(South China)[J].Tectonophysics, 2003, 361(3/4):239-254.
    [36]
    Eliyahu M, Emmanuel S, Day-Stirrat R J, et al.Mechanical properties of organic matter in shales mapped at the nanometer scale[J].Marine and Petroleum Geology, 2015, 59:294-304. http://www.sciencedirect.com/science/article/pii/S0264817214002967
    [37]
    Sone H, Morales L F, Dresen G.Microscopic observations of shale deformation from in-situ deformation experiments conducted under a scanning electron microscope[C]//49th U.S.Rock Mechanics/Geomechanics Symposium.California: American Rock Mechanics Association, 2015: 15-27.
    [38]
    Wang G.Deformation of organic matter and its effect on pores in mudrocks[J].AAPG Bulletin, 2020, 104(1):21-36. http://www.researchgate.net/publication/338394921_Deformation_of_organic_matter_and_its_effect_on_pores_in_mud_rocks
    [39]
    Lohr S C, Baruch E T, Hall P A, et al.Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J].Organic Geochemistry, 2015, 87:119-132. http://www.sciencedirect.com/science/article/pii/S0146638015001527
    [40]
    Milliken K L, Ko L T, Pommer M, et al.Sem petrography of eastern Mediterranean Sapropels:Analogue data for assessing organic matter in oil and gas shales[J].Journal of Sedimentary Research, 2014, 84(11):961-974. http://adsabs.harvard.edu/abs/2014jsedr..84..961m
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(921) PDF Downloads(5130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return