Citation: | Zhang Fu, Huang Yi, Lan Baofeng, Li Long, Liu Ting, Liu Rui, Jiang Dingchuan. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016 |
[1] |
Hao F, Zou H, Lu Y.Mechanisms of shale gas storage:Implications for shale gas exploration in China[J].AAPG Bulletin, 2013, 97(8):1325-1346. doi: 10.1306/02141312091
|
[2] |
邹才能, 董大忠, 王玉满, 等.中国页岩气特征、挑战及前景:二[J].石油勘探与开发, 2016, 43(2):166-178. doi: 10.11698/PED.2016.02.02
|
[3] |
魏威, 王飞宇.页岩油气资源体系成藏控制因素与储层特征[J].地质科技情报, 2014, 33(1):150-156. doi: 10.3969/j.issn.1009-6248.2014.01.012
|
[4] |
郭彤楼, 刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示:以四川盆地东部盆缘JY1井为例[J].天然气地球科学, 2013, 24(4):643-651. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htm
|
[5] |
马永生, 蔡勋育, 赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发, 2018, 45(4):561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
|
[6] |
赵文智, 李建忠, 杨涛, 等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发, 2016, 43(4):1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
|
[7] |
胡晨林, 张元福, 王志峰, 等.贵州北部龙马溪组页岩特征及页岩气勘探前景[J].特种油气藏, 2014, 21(4):44-47, 153. doi: 10.3969/j.issn.1006-6535.2014.04.010
|
[8] |
程璇, 徐尚, 郝芳, 等.松辽盆地嫩江组富有机质页岩有机孔隙成因[J].地质科技情报, 2019, 38(4):62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904008.htm
|
[9] |
Milliken K L, Rudnicki M, Awwiller D N, et al.Organic matter-hosted pore system, Marcellus Formation(Devonian), Pennsylvania[J].AAPG Bulletin, 2013, 97(2):177-200. doi: 10.1306/07231212048
|
[10] |
Baruch E T, Kennedy M J, Löhr S C, et al.Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation(McArthur Basin, Australia)[J].AAPG Bulletin, 2015, 99(9):1745-1770. doi: 10.1306/04061514181
|
[11] |
徐勇, 吕成福, 陈国俊, 等.川东南地区志留系龙马溪组页岩孔隙结构特征[J].地质科技情报, 2015, 34(6):108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506015.htm
|
[12] |
翟刚毅, 包书景, 庞飞, 等.贵州遵义地区安场向斜"四层楼"页岩油气成藏模式研究[J].中国地质, 2017, 44(1):1-12. doi: 10.3969/j.issn.1006-9372.2017.01.001
|
[13] |
吴小力, 李荣西, 李尚儒, 等.下扬子地区海陆过渡相页岩气成藏条件与主控因素:以萍乐坳陷二叠系乐平组为例[J].地质科技情报, 2018, 37(1):160-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801022.htm
|
[14] |
梅廉夫, 戴少武, 沈传波, 等.中、下扬子区中、新生代陆内对冲带的形成及解体[J].地质科技情报, 2008, 27(4):1-7, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200804002.htm
|
[15] |
雷子慧, 赵安坤, 余谦, 等.贵州北部安场向斜下志留统龙马溪组页岩气保存条件[J].地质科技情报, 2016, 35(4):121-127. doi: 10.3969/j.issn.1009-6248.2016.04.002
|
[16] |
张浩然, 姜华, 陈志勇, 等.四川盆地及周缘地区加里东运动幕次研究现状综述[J].地质科技通报, 2020, 39(5):118-126. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10057.shtml
|
[17] |
苗凤彬, 彭中勤, 汪宗欣, 等.雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J].地质科技通报, 2020, 39(2):31-42. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml
|
[18] |
Rafael F M, Martin F.Standardisation, calibration and correlation of the Kübler-index and the vitrinite/bituminite reflectance:An inter-laboratory and field related study[J].Swiss Journal of Geosciences, 2012, 105(2):153-170. doi: 10.1007/s00015-012-0110-8
|
[19] |
李博, 于炳松, 史淼.富有机质页岩有机质孔隙度研究:以黔西北下志留统五峰-龙马溪组为例[J].矿物岩石, 2019, 39(1):92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201901011.htm
|
[20] |
张鹏, 黄宇琪, 张金川, 等.黔西北五峰组-龙马溪组页岩气成藏条件综合评价[J].山东科技大学学报:自然科学版, 2019, 38(3):25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201903003.htm
|
[21] |
王超, 张柏桥, 陆永潮, 等.焦石坝地区五峰组-龙马溪组一段页岩岩相展布特征及发育主控因素[J].石油学报, 2018, 39(6):631-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201806003.htm
|
[22] |
杨锐, 何生, 胡东风, 等.焦石坝地区五峰组-龙马溪组页岩孔隙结构特征及其主控因素[J].地质科技情报, 2015, 34(5):105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505017.htm
|
[23] |
张晓明, 石万忠, 徐清海, 等.四川盆地焦石坝地区页岩气储层特征及控制因素[J].石油学报, 2015, 36(8):926-939, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm
|
[24] |
钟城, 秦启荣, 周吉羚, 等.川东南丁山地区龙马溪组富有机质页岩脆性评价[J].地质科技情报, 2018, 37(4):167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804023.htm
|
[25] |
Lu Y, Hao F, Lu Y, et al.Lithofacies and depositional mechanism of the Ordovician-Silurian Wufeng-Longmaxi organic-rich shales in the Upper Yangtze area, southern China[J].AAPG Bulletin, 2020, 104(1):97-129. http://www.researchgate.net/publication/340443915_Lithofacies_and_depositional_mechanisms_of_the_Ordovician-Silurian_Wufeng-Longmaxi_organic-rich_shales_in_the_Upper_Yangtze_area_southern_China
|
[26] |
孙川翔, 聂海宽, 刘光祥, 等.石英矿物类型及其对页岩气富集开采的控制:以四川盆地及其周缘五峰组-龙马溪组为例[J].地球科学, 2019, 44(11):3692-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911009.htm
|
[27] |
葛明娜, 庞飞, 包书景.贵州遵义五峰组-龙马溪组页岩微观孔隙特征及其对含气性控制:以安页1井为例[J].石油实验地质, 2019, 41(1):23-30.
|
[28] |
申宝剑, 仰云峰, 腾格尔, 等.四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨:以焦页1井五峰-龙马溪组为例[J].石油实验地质, 2016, 38(4):480-488, 495. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604010.htm
|
[29] |
Liu R, Hao F, Engelder T, et al.Influence of tectonic exhumation on porosity of Wufeng-Longmaxi shale in the Fuling gas field of the eastern Sichuan Basin, China[J].AAPG Bulletin, 2020, 104(4):939-959. doi: 10.1306/08161918071
|
[30] |
Hu H, Hao F, Lin J, et al.Organic matter-hosted pore system in the Wufeng-Longmaxi(O3w-S11) shale, Jiaoshiba area, eastern Sichuan Basin, China[J].International Journal of Coal Geology, 2017, 173:40-50. doi: 10.1016/j.coal.2017.02.004
|
[31] |
Curtis M E, Cardott B J, Sondergeld C H, et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].International Journal of Coal Geology, 2012, 103:26-31. doi: 10.1016/j.coal.2012.08.004
|
[32] |
Han Y, Horsfield B, Wirth R, et al.Oil retention and porosity evolution in organic-rich shales[J].AAPG Bulletin, 2017, 101(6):807-827. doi: 10.1306/09221616069
|
[33] |
Mastalerz M, Schimmelmann A, Drobniak A, et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97(10):1621-1643. doi: 10.1306/04011312194
|
[34] |
Hsuü K J, Shu S, Jiliang L, et al.Mesozoic overthrust tectonics in South China[J].Geology, 1988, 16(5):418-421. doi: 10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2
|
[35] |
Yan D P, Zhou M F, Song H L, et al.Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block(South China)[J].Tectonophysics, 2003, 361(3/4):239-254.
|
[36] |
Eliyahu M, Emmanuel S, Day-Stirrat R J, et al.Mechanical properties of organic matter in shales mapped at the nanometer scale[J].Marine and Petroleum Geology, 2015, 59:294-304. http://www.sciencedirect.com/science/article/pii/S0264817214002967
|
[37] |
Sone H, Morales L F, Dresen G.Microscopic observations of shale deformation from in-situ deformation experiments conducted under a scanning electron microscope[C]//49th U.S.Rock Mechanics/Geomechanics Symposium.California: American Rock Mechanics Association, 2015: 15-27.
|
[38] |
Wang G.Deformation of organic matter and its effect on pores in mudrocks[J].AAPG Bulletin, 2020, 104(1):21-36. http://www.researchgate.net/publication/338394921_Deformation_of_organic_matter_and_its_effect_on_pores_in_mud_rocks
|
[39] |
Lohr S C, Baruch E T, Hall P A, et al.Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J].Organic Geochemistry, 2015, 87:119-132. http://www.sciencedirect.com/science/article/pii/S0146638015001527
|
[40] |
Milliken K L, Ko L T, Pommer M, et al.Sem petrography of eastern Mediterranean Sapropels:Analogue data for assessing organic matter in oil and gas shales[J].Journal of Sedimentary Research, 2014, 84(11):961-974. http://adsabs.harvard.edu/abs/2014jsedr..84..961m
|