Citation: | Gao Zhihao, Zhao Ruirui, Cheng Jianmei. Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: A case study of Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073 |
[1] |
IPCC. Carbon dioxide capture and storage[M]. Cambridge: Cambridge University Press, 2005.
|
[2] |
IEA. Energy technology perspectives[J]. International Energy Agency, 2008, 648: 2.
|
[3] |
曾荣树, 孙枢, 陈代钊, 等. 减少二氧化碳向大气层的排放: 二氧化碳地下储存研究[J]. 中国科学基金, 2004, 18(4): 196-200. doi: 10.3969/j.issn.1000-8217.2004.04.002
Zeng R S, Sun S, Chen D Z, et al. Decrease carbon dioxide emission into the atmosphere: Underground disposal of carbon dioxide[J]. Bulletin of National Natural Science Foundation of China, 2004, 18(4): 196-200(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8217.2004.04.002
|
[4] |
李小春, 方志明, 魏宁, 等. 我国CO2捕集与封存的技术路线探讨[J]. 岩土力学, 2009, 30(9): 2674-2678. doi: 10.3969/j.issn.1000-7598.2009.09.022
Li X C, Fang Z M, Wei N, et al. Discussion on technical roadmap of CO2 capture and storage in China[J]. Rock and Soil Mechanics, 2009, 30(9): 2674-2678(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.09.022
|
[5] |
Ringrose P. The CCS hub in Norway: Some insights from 22 years of saline aquifer storage[J]. Energy Procedia, 2018, 146: 166-172. doi: 10.1016/j.egypro.2018.07.021
|
[6] |
Furre A K, Eiken O, Alnes H, et al. 20 years of monitoring CO2-injection at Sleipner[J]. Energy Procedia, 2017, 114(1): 3916-3926. http://www.onacademic.com/detail/journal_1000040062919910_4d6e.html
|
[7] |
李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-968. doi: 10.3321/j.issn:1000-6915.2006.05.015
Li X C, Liu Y F, Bai B, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2006.05.015
|
[8] |
Bachu S, Adams J J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management, 2003, 44(20): 3151-3175. doi: 10.1016/S0196-8904(03)00101-8
|
[9] |
Bachu S, Gunter W, Perkins E. Aquifer disposal of CO2: Hydrodynamic and mineral trapping[J]. Energy Conversion and Management, 1994, 35(4): 269-279. doi: 10.1016/0196-8904(94)90060-4
|
[10] |
Miri R, Hellevang H. Salt precipitation during CO2 storage: A review[J]. International Journal of Greenhouse Gas Control, 2016, 51: 136-147. doi: 10.1016/j.ijggc.2016.05.015
|
[11] |
Pruess K, Müller N. Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation[J]. Water Resources Research, 2009: 45: W3402.
|
[12] |
Lopez O, Youssef S, Estublier A, et al. Permeability alteration by salt precipitation: Numerical and experimental investigation using X-ray radiography[J]. E3S Web of Conferences, 2020, 146(A): 3001. http://www.researchgate.net/publication/339153218_Permeability_alteration_by_salt_precipitation_numerical_and_experimental_investigation_using_X-Ray_Radiography/download
|
[13] |
He D, Jiang P X, Xu R N. Pore-scale experimental investigation of the effect of supercritical CO2 injection rate and surface wettability on salt precipitation[J]. Environmental Science & Technology, 2019, 53(24): 14744-14751.
|
[14] |
Jie R, Wang Y, Zhang Y Q. A numerical simulation of a dry-out process for CO2 sequestration in heterogeneous deep saline aquifers[J]. Greenhouse Gases: Science and Technology, 2018, 8(6): 1090-1109. doi: 10.1002/ghg.1821
|
[15] |
Yang Z H, Wang W N, Zhang C Y, et al. Experimental study of drying effects during supercritical CO2 displacement in a pore network[J]. Microfluidics and Nanofluidics, 2018, 22(9): 101. doi: 10.1007/s10404-018-2122-9
|
[16] |
Jeddizahed J, Rostami B. Experimental investigation of injectivity alteration due to salt precipitation during CO2 sequestration in saline aquifers[J]. Advances in Water Resources, 2016, 96: 23-33. doi: 10.1016/j.advwatres.2016.06.014
|
[17] |
Ghafoori M, Tabatabaei-Nejad S, Khodapanah E. Modeling rock-fluid interactions due to CO2 injection into sandstone and carbonate aquifer considering salt precipitation and chemical reactions[J]. Journal of Natural Gas Science and Engineering, 2016, 37: 523-538.
|
[18] |
André L, Peysson Y, Azaroual M. Well injectivity during CO2 storage operations in deep saline aquifers—Part 2: Numerical simulations of drying, salt deposit mechanisms and role of capillary forces[J]. International Journal of Greenhouse Gas Control, 2013, 22: 301-312.
|
[19] |
Peysson Y, André L, Azaroual M. Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces[J]. International Journal of Greenhouse Gas Control, 2013, 22: 300-391.
|
[20] |
柯怡兵, 李义连, 张炜, 等. 岩盐沉淀对咸水层二氧化碳地质封存注入过程的影响: 以江汉盆地为例[J]. 地质科技情报, 2012, 31(3): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203018.htm
Ke Y B, Li Y L, Zhang W, et al. Impact of halite precipitation on CO2 injection into saline aquifers: A case study of Jianghan Basin[J]. Geological Science and Technology Information, 2012, 31(3): 109-115(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203018.htm
|
[21] |
Bacci G, Korre A, Durucan S. Experimental investigation into salt precipitation during CO2 injection in saline aquifers[J]. Energy Procedia, 2011, 4(22): 4450-4456. http://core.ac.uk/download/pdf/82095654.pdf
|
[22] |
Zeidouni M, Pooladi-Darvish M, Keith D. Analytical solution to evaluate salt precipitation during CO2 injection in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2009, 3: 600-611. doi: 10.1016/j.ijggc.2009.04.004
|
[23] |
Muller N, Qi R, Mackie E, et al. CO2 injection impairment due to halite precipitation[J]. Energy Procedia, 2009, 1(1): 3507-3514. doi: 10.1016/j.egypro.2009.02.143
|
[24] |
Bacci G, Korre A, Durucan S. An experimental and numerical investigation into the impact of dissolution/precipitation mechanisms on CO2 injectivity in the wellbore and far field regions[J]. International Journal of Greenhouse Gas Control, 2011, 5: 579-588. doi: 10.1016/j.ijggc.2010.05.007
|
[25] |
Kim M, Sell A, Sinton D. Aquifer on a chip: Understanding pore-scale salt precipitation dynamics during CO2 sequestration[J]. Lab on a Chip, 2013, 13(13): 2508-2518. doi: 10.1039/c3lc00031a
|
[26] |
Meng Q, Jiang X, Li D, et al. Numerical simulations of pressure buildup and salt precipitation during carbon dioxide storage in saline aquifers[J]. Computers & Fluids, 2015, 121: 92-101. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0045793015002820&originContentFamily=serial&_origin=article&_ts=1440906384&md5=0e4bec39e18eb5792fede3b4a8ed25de
|
[27] |
Miri R, van Noort R, Aagaard P, et al. New insights on the physics of salt precipitation during injection of CO2 into saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 43: 10-21. doi: 10.1016/j.ijggc.2015.10.004
|
[28] |
Berntsen A, Todorovic J, Raphaug M, et al. Salt clogging during supercritical CO2 injection into a downscaled borehole model[J]. International Journal of Greenhouse Gas Control, 2019, 86: 201-210. doi: 10.1016/j.ijggc.2019.04.009
|
[29] |
Ott H, Kloe K, Bakel M, et al. Core-flood experiment for transport of reactive fluids in rocks[J]. The Review of Scientific instruments, 2012, 83: 84501. doi: 10.1063/1.4746997
|
[30] |
Roels S, Ott H, Zitha P. μ-CT analysis and numerical simulation of drying effects of CO2 injection into brine-saturated porous media[J]. International Journal of Greenhouse Gas Control, 2014, 27: 146-154. doi: 10.1016/j.ijggc.2014.05.010
|
[31] |
Pruess K, Oldenburg C M, Moridis G J. TOUGH2 User's Guide Version 2[R]. Berkeley: Office of Scientific & Technical Information Technical Reports, 1999.
|
[32] |
Pan L, Spycher N, Doughty C, et al. ECO2N V2.0: A TOUGH2 fluid property module for modeling CO2-H2O-NACL systems to elevated temperatures of up to 300℃[J]. Greenhouse Gases: Science and Technology, 2017, 7(2): 313-327. doi: 10.1002/ghg.1617
|
[33] |
Pruess K, Spycher N. ECO2N-A fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers[J]. Energy Conversion and Management, 2007, 48(6): 1761-1767. doi: 10.1016/j.enconman.2007.01.016
|
[34] |
Verma A, Pruess K. Thermohydrologic conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations[J]. Journal of Geophysical Research, 1988, 93(B2): 1159-1173. doi: 10.1029/JB093iB02p01159
|
[35] |
Xu T, Apps J, Pruess K. Numerical simulation to study mineral trapping for CO2 disposal in deep aquifers[J]. Applied Geochemistry, 2004, 19(6): 917-936. doi: 10.1016/j.apgeochem.2003.11.003
|
[36] |
Yang G, Li Y, Atrens A, et al. Numerical investigation into the impact of CO2-water-rock interactions on CO2 injectivity at the Shenhua CCS Demonstration Project, China[J]. Geofluids, 2017, 2017: 1-17. http://www.onacademic.com/detail/journal_1000040469636610_a0c3.html
|
[37] |
刁玉杰. 神华CCS示范工程场地储层表征与CO2运移规律研究[D]. 北京: 中国矿业大学(北京), 2017.
Diao Y J. Study on the researvoir characterization and CO2 migration underground in the Shenhua CCS Demonstration Project Site[D]. Beijing: China University of Mining & Technology(Beijing), 2017.
|
[38] |
李智, 叶加仁, 曹强, 等. 鄂尔多斯盆地杭锦旗独贵加汗区带下石盒子组储层特征及孔隙演化[J]. 地质科技通报, 2021, 40(4): 49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104005.htm
Li Z, Ye J R, Cao Q, et al. Reservoir characteristics and pore evolution of the Lower Shihezi Formation in Duguijiahan zone, Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 49-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104005.htm
|
[39] |
赵会涛, 郭英海, 杜小伟, 等. 鄂尔多斯盆地高桥地区本溪组砂岩储层微观孔隙多重分形特征[J]. 地质科技通报, 2020, 39(6): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006019.htm
Zhao H T, Guo Y H, Du X W, et al. Micro-pore multifractal characteristics of Benxi Formation sandstone reservoir in Gaoqiao area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 175-184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006019.htm
|
[40] |
VanGenuchten M. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
|
[41] |
Corey A T. The interrelation between gas and oil relative permeabilities[J]. Producers Monthly, 1954, 19(1): 38-41. http://www.researchgate.net/publication/240318036_The_Interrelation_Between_Gas_and_Oil_Relative_Permeability
|
[42] |
Xie J, Zhang K, Hu L, et al. Field-based simulation of a demonstration site for carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin, China[J]. Hydrogeology Journal, 2015, 23(7): 1465-1480. doi: 10.1007/s10040-015-1267-9
|
[43] |
Sokama-Neuyam Y A, Forsetløkken S L, Lien J E, et al. The coupled effect of fines mobilization and salt precipitation on CO2 injectivity[J]. Energies, 2017, 10(8): 1125. doi: 10.3390/en10081125
|
[44] |
Baumann G, Henninges J, Lucia M D. Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron-gamma logging at the Ketzin pilot site[J]. International Journal of Greenhouse Gas Control, 2014, 28: 134-146. doi: 10.1016/j.ijggc.2014.06.023
|