Volume 40 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Zeng Bang, Liu Xiaoping, Liu Guoyong, Wang Shaochun, Li Guoyong. Logging identification and prediction of lithofacies of lacustrine shale system in Shichang Sub-Sag, Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 69-79. doi: 10.19509/j.cnki.dzkq.2021.0103
Citation: Zeng Bang, Liu Xiaoping, Liu Guoyong, Wang Shaochun, Li Guoyong. Logging identification and prediction of lithofacies of lacustrine shale system in Shichang Sub-Sag, Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 69-79. doi: 10.19509/j.cnki.dzkq.2021.0103

Logging identification and prediction of lithofacies of lacustrine shale system in Shichang Sub-Sag, Nanpu Depression

doi: 10.19509/j.cnki.dzkq.2021.0103
  • Received Date: 16 Sep 2019
  • The study of the lithofacies of shale formation is the basic work for shale oil exploration.Due to the limited distribution of the continental lacustrine basin and the fast variations of lithofacies, it is difficult to accurately identify and predict the lithofacies.With high precision and good continuity in vertical direction, the logging curve can be used to accurately identify and predict the lithofacies.Based on the experimental data of whole-rock X-ray diffraction(XRD), thin-section identification and geochemical analysis data, the lithofacies can be divided according to the division scheme named three classes & ternary plots.Fitting logging data with TOC value and mineral content, the lithofacies can be comprehensively identified.Finally, the cycle superposition model of lithofacies is established under the high-resolution sequence frame to study the distribution of lithofacies.The results show that the area is a set of oil-bearing lacustrine source rocks with Ⅰ and Ⅱ1 kerogen, which can be divided into 18 types of lithofacies, among which organic-rich argillaceous lamellar shale and organic-rich mixed lamellar shale are the dominant lithofacies.The evaluation indexes of the lithofacies can be calculated and predicted through the logging curve.There is a coupling relationship between the lithofacies and the sequence so that the lithofacies are predictable under the isochronous stratigraphic framework.The lithofacies of shale formation of the Es34 sub-member are under this framework, forming two organic-rich layers located in the middle of MSC1 and MSC2 middle cycles and four sedimentary tectonic development zones corresponding to the SQ5-SQ8 ascending semi-cycling.

     

  • loading
  • [1]
    贾承造, 郑民, 张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发, 2012, 39(2):129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
    [2]
    邹才能, 董大忠, 王社教, 等, 中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发, 2010, 37(6):641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
    [3]
    Zhu H, Kong X, Long H, et al.Duvernay shale lithofacies distribution analysis in the West Canadian Sedimentary Basin[J].IOP Conference Series Earth and Environmental Science, 2018, 121(5):1-8. doi: 10.1088/1755-1315/121/5/052007
    [4]
    Bowker K A.Recent development of the Barnett shale play, Fort Worth Basin[J].West Texas Geological Society Bulletin, 2003, 42(6):1-11. http://www.researchgate.net/publication/285699986_Recent_development_of_the_Barnett_Shale_play_Fort_Worth_Basin
    [5]
    Hichey J J, Henk B.Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 TP Sims well, Wise County Texas[J].AAPG Bulletin, 2013, 91(4):437-443. http://www.researchgate.net/publication/249897891_Lithofacies_summary_of_the_Mississippian_Barnett_Shale_Mitchell_2_TP_Sims_well_Wise_County_Texas
    [6]
    Zhao Xianzheng, Zhou Lihong, Pu Xiugang, et al.Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin:A case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China[J].Petroleum Exploration and Development, 2018, 45(3):361-372. http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-exploration-development_thesis/0201248774953.html
    [7]
    Ou Chenghua, Li Chaochu, Rui Zhenhua, et al.Lithofacies distribution and gas-controlling characteristics of the Wufeng-Longmaxi black shales in the southeastern region of the Sichuan Basin, China[J].Journal of Petroleum Science and Engineering, 2018, 165:269-283. doi: 10.1016/j.petrol.2018.02.024
    [8]
    Wang G C, Catt T R.Organic-rich marcellus shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin[J].AAPG Bulletin, 2013, 97(12):2173-2205. doi: 10.1306/05141312135
    [9]
    Daniel M J, Ronald J H, Tim E R, et al.Unconventional shale-gas system:The Mississippian barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin, 2007, 91(4):475-499. doi: 10.1306/12190606068
    [10]
    Loucks R G, Ruppel S C.Mississippian Barnett Shale:Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J].AAPG Bulletin, 2007, 91(4):579-601. doi: 10.1306/11020606059
    [11]
    Qiu Zhen, Tao Huifei, Zou Cainen, et al.Lithofacies and organic geochemistry of the Middle Permian Lucaogou Formation in the Jimusar Sag of the Junggar Basin, NW China[J].Journal of Petroleum Science and Engineering, 2016, 140:97-107. doi: 10.1016/j.petrol.2016.01.014
    [12]
    王宏语, 杨润泽, 张峰, 等.富含有机质泥页岩岩相表征的研究现状与趋势[J].地质科技情报, 2018, 37(2):141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802020.htm
    [13]
    孟令箭, 吴建楠, 汤建荣, 等.南堡凹陷地层压力演化及成因[J].地质科技情报, 2016, 35(5):110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605015.htm
    [14]
    曹宇.南堡凹陷断裂系统类型及其控藏作用[J].大庆石油地质与开发, 2016, 35(4):22-27. doi: 10.3969/J.ISSN.1000-3754.2016.04.004
    [15]
    万里明, 吴均, 卢军凯, 等.基于Adam-神经网络的致密砂岩脆性评价方法:以南堡凹陷高北边坡为例[J].地质科技通报, 2020, 39(2):94-103. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9978.shtml
    [16]
    Mohamed O, Abouelresh, Roger M S.Lithofacies and sequence stratigraphy of the Barnet Shale in east-central Fort Worth Basin, Texas[J].AAPG Bulletin, 2012, 96(1):34-43. http://www.researchgate.net/publication/264332984_lithofacies_and_sequence_stratigraphy_of_the_barnett_shale_in_east-central_fort_worth_basin_texas
    [17]
    董春梅, 马存飞, 林承焰, 等.一种泥页岩层系岩相划分方法[J].中国石油大学学报:自然科学版, 2015, 39(3):1-7. doi: 10.3969/j.issn.1673-5005.2015.03.001
    [18]
    Wang Pengfei, Jiang Zhenxue, Yin Lishi, et al.Lithofacies classification and its effect on pore structure of the Cambrian marine shale in the Upper Yangtze Platform, South China:Evidence from FE-SEM and gas adsorption analysis[J].Journal of Petroleum Science and Engineering, 2017, 156:307-321. doi: 10.1016/j.petrol.2017.06.011
    [19]
    Wang Chao, ZhangBaiqiao, Lu Yingchao, et al.Lithofacies distribution characteristics and its controlling factors ofshale in Wufeng Formation-Member 1 of Longmaxi Formation in the Jiaoshiba area[J].Petroleum Research, 2018, 3:306-319. doi: 10.1016/j.ptlrs.2018.11.005
    [20]
    Lazar O R, Bohacs K M, Macquaker J H, et al.Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections:Nomenclature and description guidelines[J].Journal of Sedimentary Research, 2015, 85(3):230-246. doi: 10.2110/jsr.2015.11
    [21]
    柳波, 石佳欣, 付晓飞, 等.陆相泥页岩层系岩相特征与页岩油富集条件:以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J].石油勘探与开发, 2018, 45(5):84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm
    [22]
    赵显令, 王贵文, 周正龙, 等.地球物理测井岩性解释方法综述[J].地球物理学进展, 2015, 30(3):1278-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503038.htm
    [23]
    Huang Chuanyan, Zhang Jinchuan, Wang Hua, et al.Lower Es3 in Zhanhua Sag, Jiyang Depression:A case study for lithofacies classification in lacustrine mud shale.[J].Applied Geophysics, 2018, 15(2):151-164. doi: 10.1007/s11770-018-0678-5
    [24]
    马淼, 孙卫, 白云云, 等.姬塬地区长6储层成岩相特征及测井响应[J].地质科技情报, 2018, 37(3):177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803023.htm
    [25]
    时志强, 曾德勇, 熊兆军, 等.三叠纪巨型季风在上扬子地区的沉积学记录[J].矿物岩石地球化学通报, 2010, 29(2):164-172. doi: 10.3969/j.issn.1007-2802.2010.02.008
    [26]
    宋明水.东营凹陷南斜坡沙四段沉积环境的地球化学特征[J].矿物岩石, 2005, 25(1):67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200501013.htm
    [27]
    许璟, 蒲仁海, 杨林, 等.塔里木盆地石炭系泥岩沉积时的古盐度分析[J].沉积学报, 2010, 28(3):509-517. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201003014.htm
    [28]
    张廷山, 彭志, 祝海华, 等.海安凹陷曲塘次凹阜二段页岩油形成条件及勘探潜力[J].地质科技情报, 2016, 35(2):177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602035.htm
    [29]
    王贵文, 徐敬领, 杨宁, 等.小波分频分析法在沉积层序划分及等时对比中的应用[J].高校地质学报, 2013, 19(1):70-77. doi: 10.3969/j.issn.1006-7493.2013.01.011
    [30]
    李峰峰, 郭睿, 余义常.层序地层划分方法进展及展望[J].地质科技情报, 2019, 38(4):215-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904022.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(548) PDF Downloads(5055) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return