Volume 40 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Cui Jingyue, Dong Yusen, Yue Wenli, Abudula-Abudukadier, Zhang Bangzheng. Extraction of iron meteorites from the Barringer Meteor Crater based on remote sensing alteration information[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 209-216. doi: 10.19509/j.cnki.dzkq.2021.0116
Citation: Cui Jingyue, Dong Yusen, Yue Wenli, Abudula-Abudukadier, Zhang Bangzheng. Extraction of iron meteorites from the Barringer Meteor Crater based on remote sensing alteration information[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 209-216. doi: 10.19509/j.cnki.dzkq.2021.0116

Extraction of iron meteorites from the Barringer Meteor Crater based on remote sensing alteration information

doi: 10.19509/j.cnki.dzkq.2021.0116
  • Received Date: 17 Feb 2020
  • At present, there are more than 190 craters have been confirmed on the earth, and most of the simple impact craters with a diameter of less than 1 km are formed by iron impactor.There is a large amount of iron meteorite material around the impact crater struck by the iron impactor.The spatial distribution characteristics of iron meteorite are of great significance for studying the impact process and mechanism of the crater.The enrichment of iron can also be used as important information to explore suspected impact craters on the Earth's surface.In order to obtain iron meteorite fragments around the impact crater, field investigations were mainly conducted manually in the early days, but this method was inefficient and required a lot of manpower and material resources.Based on the unique spectral characteristics of the meteorite, the spatial distribution characteristics of the meteorite material around the impact crater can be easily obtained by using the remote sensing alteration information extraction method.This paper selects Barringer Meteor Crater in Arizona, USA as the research object, considering of the spectral characteristics of iron meteorite, and using Band Math-PCA(principal components analysis).The extraction results fit well with the field survey of the distribution of iron meteorites by the predecessors.The iron meteorite aggregation area on the east, southeast and southwest sides of the impact crater was well reflected in the extraction results.The iron meteorite around the impact crater was well extracted, and the iron meteorite gathering areas on the east, southeast and southwest sides were well reflected on the extraction result map.It shows that it is feasible to use the principal component analysis-band ratio method to extract the iron meteorite information around the Barringer crater.The experimental results accurately obtained the spatial distribution information of iron meteorite around the impact crater.This paper provides a feasible plan for exploring the ring structure of the impact on the earth's surface, and provides an important method reference for the extraction of similar impact craters in the future.

     

  • loading
  • [1]
    Kring D A.Guidebook to the geology of Barringer Crater, Arizona[M].Houston:Meteoritical Society Press, 2017.
    [2]
    Craddock R A, Maxwell T A, Howard A D.Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions on Mars[J].Journal of Geophysical Research, 1997, 102(E6):13321-13340. doi: 10.1029/97JE01084
    [3]
    Barlow N G, Bradley T L.Martian impact craters:Correlations of Ejecta and interior morphologies with diameter, latitude, and terrain[J].Icarus, 1990, 87(1):156-179. doi: 10.1016/0019-1035(90)90026-6
    [4]
    陈鸣, 肖万生, 谢先德, 等.岫岩陨石撞击坑的证实[J].科学通报, 2009, 54(22):3507-3511. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200922013.htm
    [5]
    Chao E C T.Shock effects in certain rock-forming minerals[J].Science, 1967, 156:192-202. doi: 10.1126/science.156.3772.192
    [6]
    French B M, Short N M.Shock Metamorphism of natural materials[J].Science, 1966, 153:903-906.
    [7]
    Stöffler D.Deformation and transformation of rock-forming minerals by natural and experimental shock processes:1.Behaviour of minerals under shock compression[J].Fortschr Mineral, 1972, 49:50-113.
    [8]
    Stöffler D.Deformation and transformation of rock-forming minerals by natural and experimental processes:2.Physical properties of shocked minerals[J].Fortschr Mineral, 1974, 51:256-289.
    [9]
    Grieve R A F, Langenhorst F, Stöffler D.Shock metamorphism in nature and experiment:Ⅱ.Significance in geoscience[J].Meteorit Planet Sci, 1996, 31(1):6-35. doi: 10.1111/j.1945-5100.1996.tb02049.x
    [10]
    Keoberl C.Mineralogical and geochemical aspects of impact craters[J].Mineral Mag., 2002, 66(5):745-768. doi: 10.1180/0026461026650059
    [11]
    D'oraziom, Folco L, et al.Gebel Kamil:The iron meteorite that formed the Kamil crater(Egypt)[J].Meteoritics & Planetary Science, 2011, 46(8):1179-1196.
    [12]
    Rowan L C, Goetz A F H, Ashley R P.Discrimination of hydrothemally altered and unaltered rocks in visible and near-infrared multispectral images[J].Geophysics, 1977, 42:522-535. doi: 10.1190/1.1440723
    [13]
    成功, 曾令瑶, 陈松岭.OLI与ETM+数据在豫西沉积型铝土矿找矿中的对比研究[J].国轻金属, 2014(11):7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201411004.htm
    [14]
    杨长保, 姜琦刚, 刘万崧, 等.基于ASTER数据的内蒙古东乌珠穆沁北部地区遥感蚀变信息提取[J].吉林大学学报:地球科学版, 2009, 39(6):1163-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200906035.htm
    [15]
    王爱云, 王安建, 李丽辉.基于最大噪声分量变换(MNF)和矿物标识的植被区蚀变信息提取[J].地质与勘探, 2011, 47(4):710-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201104022.htm
    [16]
    Abrams M J.Landsat-4 thermatic mapper and thematic mapper simulator data for a porphyry copper deposit[J].Photogrammet ric Engineering and Remote Sensing, 1984, 50(8):1171-1173.
    [17]
    Gabr S, Ghulan A, Kusky T.Detecting areas of high-potential copper mineralization using ASTER data[J].Ore Geology Reviews, 2010, 38(1/2):59-69.
    [18]
    刘燕君.矿产信息的遥感地面模式[M].北京:地质出版社, 1993.
    [19]
    Jin M S, Wang H, Zhang W, el al.Method for extraction of ferric contamination anomly from high-resoulusensing data and its application[J].Remote Sensing for Land Resourses, 2015, 27(3):122-127.
    [20]
    Kusky T M, Talaat M R.Structural controls on Neoproterozoic min eralization in the South Eastern Desert, Egypt:An integrated field, Landsat TM, and SIR-C/X SAR approach[J].Journal of African Earth Sciences, 2002, 35(1):107-121. doi: 10.1016/S0899-5362(02)00029-5
    [21]
    Rajesh H M.Mapping Proterozoic unconformity-related uranium deposits in the Rockhole area, Northern Territory, Australia using Landsat ETM+[J].Ore Geology Reviews, 2008, 33(3/4):382-396.
    [22]
    Adiri Z, El Harti A, Jellouli A, et al.Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Draa in the lier, Moroccean Anti Atlas[J].Journal of Applied Remote Sensing, 2016, 10(1):016005. doi: 10.1117/1.JRS.10.016005
    [23]
    赵元洪, 张福祥, 陈南峰.波段比值的主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感, 1991, 9(3):12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG199103002.htm
    [24]
    高景刚, 薛春纪, 吴淦国, 等.基于知识的蚀变遥感异常信息快速提取及找矿应用实践[J].遥感学报, 2008, 12(1):186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200801024.htm
    [25]
    王乐.西藏尼雄地区遥感成矿信息提取与找矿远景分析[D].成都: 成都理工大学, 2011.
    [26]
    郭艳, 赵忠海, 曲晖, 等.黑龙江多宝山地区遥感找矿蚀变异常提取方法研究[J].地质科技情报, 2011, 30(2):117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201102020.htm
    [27]
    唐超, 周可法, 张楠楠, 等.基于Landsat-8 OLI和ASTER数据集成和融合和融合的矿化蚀变信息提取[J].地质科技情报, 2018, 37(6):211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806026.htm
    [28]
    Wright S P, Ramsey M S.Thermal infrared data analyses of Meteor Crater, Arizona:Implications for Mars spaceborne data from the thermal emission imaging system[J].Journal of Geophysical Research, 2006, 111(E2):1-16.
    [29]
    Ramsey M S.Ejecta distribution patterns at Meteor Crater, Arizona:On the applicability of lithologic end-member deconvolution for spaceborne thermal infrared data of Earth and Mars[J].Journal of Geophysical Research, 2002, 107(E8):3-1-3-14.
    [30]
    Garvin J B, Bufton J L, Campell B A, et al.Terrain analysis of Meteor Crater ejecta blanket[J].Lunar and Planetary Science Conference, 1989, 20:332-334.
    [31]
    A Myers S A, Cygan R T, Assink R A, et al.29Si MAS NMR relaxation study of shocked Coconino sandstone from Meteor Crater, Arizona[J].Phy.Chem.Minerals, 1988, 25:313-317.
    [32]
    李旭文, 牛志春, 姜晟.Landsat 8卫星OLI遥感影像在生态环境监测中的应用研究[J].环境监控与预警, 2013, 5(6):1-5. doi: 10.3969/j.issn.1674-6732.2013.06.001
    [33]
    Moore F, Rastmanesh F, Asadi H, et al.Mapping mineralogical alteration using principal component analysis and matched filter processing in the Takab area, Northwest Iran, from ASTER Data[J].Internation Journal of Remote Sensing, 2008, 29(10):2851-2867. doi: 10.1080/01431160701418989
    [34]
    张玉君, 杨建民.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感, 1998, 38(2):46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG802.006.htm
    [35]
    马威.基于多时相遥感数据融合的矿化蚀变信息提取研究[D].昆明: 昆明理工大学, 2016.
    [36]
    薛云, 戴塔根, 邹艳红, 等.基于主成分分析的SVM矿化信息提取研究:以青海黄南州阿哇地区为例[J].遥感应用, 2007, 6(6):32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200706007.htm
    [37]
    张玉君, 曾朝铭, 陈微.ETM+(TM)蚀变遥感异常提取方法研究与应用:方法选择和技术流程[J].国土资源遥感, 2003, 4(2):44-49. doi: 10.3969/j.issn.1001-070X.2003.02.011
    [38]
    梁丹迪, 周可法, 王珊珊, 等.不同空间分辨率高光谱遥感数据对蚀变矿物信息提取的影响[J].地质科技情报, 2019, 38(3):282-289. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903031.htm
    [39]
    荆凤, 陈建平.矿化蚀变信息的遥感提取方法综述[J].遥感信息, 2005, 6(2):62-65. doi: 10.3969/j.issn.1000-3177.2005.02.016
    [40]
    徐凯, 袁良军, 杨炳南, 等.黔东北伴生-次生矿物遥感数据组合式挖掘与隐伏锰矿信息提取[J].地质科技通报, 2020, 39(4):37-43. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9997.shtml
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(333) PDF Downloads(5036) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return