Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Li Jing, Zhang Yanian, Liang Xing, Liu Yan. Paleo-salt porewater trapped in the clayey aquitard and its transport processes in Jiangsu coastal plain[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 90-98. doi: 10.19509/j.cnki.dzkq.2021.0158
Citation: Li Jing, Zhang Yanian, Liang Xing, Liu Yan. Paleo-salt porewater trapped in the clayey aquitard and its transport processes in Jiangsu coastal plain[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 90-98. doi: 10.19509/j.cnki.dzkq.2021.0158

Paleo-salt porewater trapped in the clayey aquitard and its transport processes in Jiangsu coastal plain

doi: 10.19509/j.cnki.dzkq.2021.0158
  • Received Date: 08 Jul 2021
    Available Online: 02 Mar 2022
  • Clayey aquitards are widespread in the coastal plain and they are capable to preserve paleo-saltwater. Its salinity distribution and transport process play an important role on the evolution of aquifer groundwater, yet they have attracted little attention. In this paper, undisturbed clayey samples in seven boreholes along the Jiangsu coastal plain were collected and porewater was extracted by squeezing. Based on the natural tracers Cl- and Br- profiles and numerical simulation, porewater salinity characterization and transport mechanism were analyzed. The results showed that two trends of porewater Cl- variations are observed: one is that Cl- peak value is near surface and decreases with depth; the other one is that the Cl- peak value is at depth of 25 m and decreases towards both ends. Porewater has a Cl- range of 486.2-38 036.7 mg/L and Cl/Br of 72-360(average: 241). The relations between Cl- and Cl/Br ratios and the profile signature indicate that saline porewater is of marine origin, and from the Holocene transgression seawater. Subsequently, they were diluted by freshwater. Aquitard porewater 1-D transport model suggests that the transgression and regression events are dominant for the salinity evolution. Holocene seawater is still trapped in the sediment whereas Pleistocene seawater has been flushed out. In aquitard, diffusion is dominant for solute transport with the vertical velocity of 0.43-15.8 mm/yr and influenced by advection in higher permeability sand layers. The redistribution of paleo-saltwater, in particular, in the condition of groundwater over-extraction, would be the important saline source for aquifer groundwater.

     

  • loading
  • [1]
    Huang G X, Liu C Y, Sun J C, et al. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta[J]. Science of the Total Environment, 2018, 625: 510-518. doi: 10.1016/j.scitotenv.2017.12.322
    [2]
    高茂生, 骆永明. 我国重点海岸带地下水资源问题与海水入侵防控[J]. 中国科学院院刊, 2016, 31(10): 1197-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201610010.htm

    Gao M S, Luo Y M. Change of groundwater resource and prevention and control of seawater intrusion in coastal zone[J]. Proceedings of the Chinese Academy of Sciences, 2016, 31(10): 1197-1203(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201610010.htm
    [3]
    Shi X Q, Jiang F, Reng Z X, et al. Characterization of the regional groundwater quality evolution in the North Plain of Jiangsu Province, China[J]. Environmental Earth Sciences, 2015, 74(7): 5587-5604. doi: 10.1007/s12665-015-4575-4
    [4]
    王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. doi: 10.19509/j.cnki.dzkq.2020.0101

    Wang Y X, Gan Y Q, Deng Y M, et al. Land-ocean interactions, and their eco-environmental effects in the coastal zone: Current progress and future perspectives[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 1-10(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0101
    [5]
    Li J, Liang X, Zhang Y N, et al. Salinization of porewater in a multiple aquitard-aquifer system in Jiangsu Coastal Plain, China[J]. Hydrogeology Journal, 2017, 25: 2377-2390. doi: 10.1007/s10040-017-1622-0
    [6]
    Li J, Liang X, Jin M G, et al. Origin and evolution of aquitard porewater in the western coastal plain of Bohai Bay, China[J]. Groundwater, 2017, 55(6): 917-925. doi: 10.1111/gwat.12590
    [7]
    Ge Q, Liang X, Jin M G, et al. Origin and geochemical processes of porewater in clay-rich deposits in the North Jiangsu Coastal Plain, China[J]. Geofluids, 2017: 1-13, doi. org/10.1155/2017/5486297. doi: 10.1155/2017/5486297
    [8]
    Larsen F, Tran L V, Hoang H V, et al. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain[J]. Nature Geoscience, 2017, 10(5): 376-381. doi: 10.1038/ngeo2938
    [9]
    Xu N Z, Gong J S, Yang G Q. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China[J]. Journal of Contaminate Hydrology, 2018, 208: 1-9. doi: 10.1016/j.jconhyd.2017.11.003
    [10]
    Post V E A, Van Der Plicht H, Meijer H. The origin of brackish and saline groundwater in the coastal area of the Netherlands[J]. Netherlands Journal of Geosciences, 2003, 82(2): 133-147. doi: 10.1017/S0016774600020692
    [11]
    Han D M, Cao G L, Currell M J, et al. Groundwater salinization and flushing during glacial-interglacial cycles: Insights from aquitard porewater tracer profiles in the North China Plain[J]. Water Resources Research, 2020: 1-23, doi: 10.1029/2020WR027879.
    [12]
    Wang Y, Jiao J J, Cherry J A., et al. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 461/462: 663-671. doi: 10.1016/j.scitotenv.2013.05.046
    [13]
    胥勤勉, 袁桂邦, 张金起, 等. 渤海湾沿岸晚第四纪地层划分及地质意义[J]. 地质学报, 2011, 85(8): 1352-1367. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201108010.htm

    Xu Q M, Yuan G L, Zhang J Q, et al. Stratigraphic division of the Late Quaternary strata along the coast of Bohai Bay and its geology significance[J]. Acta Geologica Sinica, 2011, 85(8): 1352-1367(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201108010.htm
    [14]
    Xue Y Q, Wu J C, Ye S J, et al. Hydrogeological and hydrogeochemical studies for salt water intrusion on the south coast of Laizhou Bay, China[J]. Ground Water, 2000, 38(1): 38-45. doi: 10.1111/j.1745-6584.2000.tb00200.x
    [15]
    He Z K, Ma C M, Zhou A G, et al. Using hydrochemical and stable isotopic (δ2H, δ18O, δ11B, and δ37Cl) data to understand groundwater evolution in an unconsolidated aquifer system in the southern coastal area of Laizhou Bay, China[J]. Applied Geochemistry, 2018, 90: 129-141. doi: 10.1016/j.apgeochem.2018.01.003
    [16]
    梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [17]
    Mazurek M, Alt-Epping P, Bath A, et al. Natural tracer profiles across argillaceous formations[J]. Applied Geochemistry, 2011, 26(7): 1035-1064. doi: 10.1016/j.apgeochem.2011.03.124
    [18]
    Harrington G A, Gardner W P, Smerdon B D, et al. Palaeohydrogeological insights from natural tracer profiles in aquitard porewater, Great Artesian Basin, Australia[J]. Water Resources Research, 2013, 49(7): 4054-4070. doi: 10.1002/wrcr.20327
    [19]
    Hendry M J, Barbour S L, Novakowski K, et al. Paleohydrogeology of the Cretaceous sediments of the Williston Basin using stable isotopes of water[J]. Water Resources Research, 2013, 49(8): 4580-4592. doi: 10.1002/wrcr.20321
    [20]
    Hendry M J, Harrington G A. Comparing vertical profiles of natural tracers in the Williston Basin to estimate the onset of deep aquifer activation[J]. Water Resources Research, 2014, 50(8): 6496-6506. doi: 10.1002/2014WR015652
    [21]
    Kwong H T, Jiao J J, Liu K, et al. Geochemical signature of pore water from core samples and its implications on the origin of saline pore water in Cangzhou, North China Plain[J]. Journal of Geochemical Exploration, 2015, 157: 143-152. doi: 10.1016/j.gexplo.2015.06.008
    [22]
    康博. 江苏沿海地区地下水演化与合理开发利用研究[D]. 长春: 吉林大学, 2017.

    Kang B. The study of groundwater evolution and rational exploitation and utilizing in Jiangsu coastal area[D]. Changchun: Jilin University, 2017(in Chinese with English abstract).
    [23]
    赵继昌, 梁静, 蔡鹤生. 苏北平原地下咸淡水形成与含水介质的关系[J]. 水文地质工程地质, 1993(3): 25-27 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199303007.htm

    Zhao J C, Liang J, Cai H S. Relationship between the formation of brackish water and aquifer media in the Subei Plain[J]. Hydrogeology and Engineering Geology, 1993(3): 25-27(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199303007.htm
    [24]
    韩有松, 孟广兰, 王少青. 中国北方沿海第四纪地下卤水[M]. 北京: 科学出版社, 1996.

    Han Y S, Meng G L, Wang S Q. Quaternary underground brines along the northern coast of China[M]. Beijing: Science Press, 1996(in Chinese).
    [25]
    杨达源. 江苏沿海第四纪海侵层的分布与新构造运动的基本特征[J]. 地震学刊, 1986(1): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK198601003.htm

    Yang D Y. Quaternary transgressive sediments and neo-tectonic movement in the coastal area of Jiangsu Province[J]. Journal of Seismology, 1986(1): 24-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK198601003.htm
    [26]
    鲍俊林. 明清江苏沿海盐作地理与人地关系变迁[D]. 上海: 复旦大学, 2014.

    Bao J L. Jiangsu coast salt activity geography and the changes of human-land relationship in Ming and Qing dynasties[D]. Shanghai: Fudan University, 2014(in Chinese with English abstract).
    [27]
    葛勤, 梁杏, 龚绪龙, 等. 不同饱和黏性土渗透系数预测方法的应用与对比: 以苏北沿海平原黏土为例[J]. 地球科学, 2017, 42(5): 793-803. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705014.htm

    Ge Q, Liang X, Gong X L, et al. Application and comparison of various methods for determining hydraulic conductivity in saturated clay-rich deposits: A case study of clay-rich sediments in North Jiangsu Coastal Plain[J]. Earth Science, 2017, 42(5): 793-803(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705014.htm
    [28]
    李静, 梁杏, 靳孟贵, 低渗透介质孔隙溶液的提取及其应用综述[J]. 水文地质工程地质, 2012, 39(4): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201204008.htm

    Li J, Liang X, Jin M G. Review on porewater extraction techniques in low-permeability media and their application[J]. Hydrogeology and Engineering Geology, 2012, 39(4): 26-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201204008.htm
    [29]
    赵建芳, 汪丙国, 廖嘉琦, 等. 基于野外Guelph入渗法与室内变水头达西法的土壤饱和渗透系数变化规律[J]. 地质科技情报, 2019, 38(2): 235-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902027.htm

    Zhao J F. Wang B G, Liao J Q, et al. Variation law of soil saturated hydraulic conductivity based on field Guelph infiltration method and indoor variable head Darcy method[J]. Geological Science and Technology Information, 2019, 38(2): 235-242(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902027.htm
    [30]
    葛勤, 梁杏, 龚绪龙, 等. 低渗透岩土有效扩散系数的室内测定与分析[J]. 水文地质工程地质, 2017, 44(3): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201703016.htm

    Ge Q, Liang X, Gong X L, et al. Laboratory determination and analysis of effective diffusion coefficients for low-permeability rock and clay[J], Hydrogeology and Engineering Geology, 2017, 44(3): 93-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201703016.htm
    [31]
    缪卫东, 李世杰, 王润华, 长江三角洲北翼J9孔岩芯沉积特征及地层初步划分[J]. 第四纪研究, 2009, 29(1): 126-134.

    Miao W D, Li S J, Wang R H, Preliminary study on sedimentary characteristics and stratum division of J9 core in the north wing of the Yangtze River Delta[J]. Quaternary Sciences, 2009, 29(1): 126-134(in Chinese with English abstract).
    [32]
    Cartwright I, Weaver T R, Fulton S, et al. Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia[J]. Applied Geochemistry, 2004, 19: 1233-1254.
    [33]
    Li J, Liang X, Jin M G, et al. Geochemistry of clayey aquitard pore water as archive of paleo-environment, western Bohai Bay[J]. Journal of Earth Science, 2015, 26(3): 445-452.
    [34]
    Qi H H, Ma C M, He Z K, et al. Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China[J]. Science of the Total Environment, 2019, 650(1): 878-890.
    [35]
    Davis S N, Whittemore D O, Fabryka-martin J. Uses of chloride/bromide ratios in studies of potable water[J]. Groundwater, 1998, 36(2): 338-350.
    [36]
    王绍武, 黄建斌, 闻新宇, 等. 4~2 ka BP中国干旱的证据和模拟研究[J]. 科学通报, 2007, 52(20): 2428-2433. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200720018.htm

    Wang S W, Huang J B, Wen X Y, et al. Evidence and simulation of drought during 4-2 ka BP in China[J]. Chinese ScienceBulletin, 2007, 52(20): 2428-2433(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200720018.htm
    [37]
    Batlle-Aguilar J, Cook P G, Harrington G A. Comparison of hydraulic and chemical methods for determining hydraulic conductivity and leakage rates in argillaceous aquitards[J]. Journal of Hydrology, 2016, 523: 102-121.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(326) PDF Downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return