Volume 40 Issue 3
May  2021
Turn off MathJax
Article Contents
Yue Wenli, Dong Yusen, Abudula-Abudukadier, Cui Jingyue, Zhang Bangzheng. Comparison and analysis of CryoSat DEM and the several Antarctic DEM[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 219-227. doi: 10.19509/j.cnki.dzkq.2021.0315
Citation: Yue Wenli, Dong Yusen, Abudula-Abudukadier, Cui Jingyue, Zhang Bangzheng. Comparison and analysis of CryoSat DEM and the several Antarctic DEM[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 219-227. doi: 10.19509/j.cnki.dzkq.2021.0315

Comparison and analysis of CryoSat DEM and the several Antarctic DEM

doi: 10.19509/j.cnki.dzkq.2021.0315
  • Received Date: 02 Jun 2020
  • Antarctica is covered by huge snow and ice, and its geological structure is bounded by the Trans-Antarctic Mountains, and is generally divided into the East Antarctic Shield and the West Antarctic Active Zone. Digital elevation model (DEM) is one of the important basic data to study the Antarctic ice sheet change. Obtaining elevation change information through the comparison of multi-period DEM is an important means to analyze the changes in the thickness and material balance of the Antarctic ice sheet. However, the horizontal and vertical errors between different types of DEM affect the accuracy of the analysis results. In this study, the horizontal error first eliminated by registration between DEMs, then elevation difference and standard deviation are calculated between CryoSat DEM and other DEMs, finally the temporal and spatial variation characteristics are evaluated. The results show that in the plane, the horizontal offset between TanDEM_X DEM and CryoSat DEM is the smallest, while that between ICESat DEM and CryoSat DEM is the largest. In the vertical direction, within the gradient range of 0° ~ 1°, the mean elevation difference between CryoSat DEM and TanDEM_X DEM is between 3.5 and 5.5 m, and the standard deviation is less than 18.0 m. The mean elevation difference between CryoSat DEM and Bamber 1km DEM is between -2.5 and +1.0 m, and the standard deviation is less than 24.2 m. The mean elevation difference between CryoSat DEM and ICESat DEM is between -25.0 and -1.0 m, and the standard deviation is less than 47.2 m. The mean elevation difference between CryoSat DEM and RAMPv2 DEM is between 1.3 and 3.2 m, and the standard deviation is less than 45.6 m. It is found that the internal elevation of Antarctic ice sheet increases, but the elevation of southwest ice sheet and southeast ice sheet decreases, and the southwest pole decreases obviously, while the elevation of Antarctic edge area decreases obviously. This study provides an important reference for global change research and Antarctic material balance research.

     

  • loading
  • [1]
    秦大河, 任贾文. 南极冰川学[M]. 北京: 科学出版社, 2001.

    Qin D H, Ren J W. Antarctic glaciology[M]. Beijing: Science Press, 2001(in Chinese).
    [2]
    Vaughan D G. Reassessment of net surface mass balance in Antarctica[J]. Journal of Climate, 1999, 12(4): 933-946. doi: 10.1175/1520-0442(1999)012<0933:RONSMB>2.0.CO;2
    [3]
    Zwally J H, Brenner A C, Dimarzio J P, et al. Ice sheet topography, slopes and flow directions from ERS altimetry[C]//Florence, Italy: The 3rd ERS Symposium. 1997.
    [4]
    Rignot E, Bamber J L, Van D, et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling[J]. Nature Geoscience, 2008, 1(2): 106-110. doi: 10.1038/ngeo102
    [5]
    王旭, 周爱国, 孙自永, 等. 1972-2009年念青唐古拉山西段冰湖分布及其变化特征[J]. 地质科技情报, 2012, 31(4): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204017.htm

    Wang X, Zhou A G, Sun Z Y, et al. Distribution and Changes Characteristics of Glacial Lakes in Western Nyainqentanglha Range During 1972-2009[J]. Geological Science and Technology Information, 2012, 31(4): 91-97(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204017.htm
    [6]
    阿布都拉·阿不都卡地尔, 董玉森, 务宇宽, 等. 1972-2017年南阿尔泰山中部冰湖变化特征及其对气候变化的响应[J]. 地质科技通报, 2020, 39(4): 94-102. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10004.shtml

    Abudula·Abudukadier, Dong Y S, Wu Y K, et al. Characteristics of glacial lakes in the central part of the southern Altai Mountains from 1927 to 2017 and their responses to climate changes[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 94-102(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10004.shtml
    [7]
    胡涛, 樊鑫, 王硕, 等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报, 2020, 39(2): 113-121. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9980.shtml

    Hu T, Fan X, Wang S, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 113-121(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9980.shtml
    [8]
    赵洪波, 梁涛, 何远信. ICDP湖泊科学钻探进展[J]. 地质科技通报, 2020, 39(2): 204-214. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9991.shtml

    Zhao H B, Liang T, He Y X. Advances of ICDP lake scientific drilling program[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 204-214(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9991.shtml
    [9]
    Zwally H J, Binschadler R A, Brenner A C, et al. Surface elevation contours of Greenland and Antarctic Ice Sheet[J]. Journal of Geophysical Research: Oceans, 1983, 88(C3): 1589-1598. doi: 10.1029/JC088iC03p01589
    [10]
    Budd W F, Jenssen D, Smith I N. A three-dimensional time-dependent model of the West Antarctic ice sheet[J]. Annals of Glaciology, 1984, 5: 29-36. doi: 10.3189/1984AoG5-1-29-36
    [11]
    Zwally H J, Major J A, Brenner A C, et al. Ice measurements by GEOSAT radar altimetry[J]. Johns Hopkins APL Technical Digest, 1987, 8(2): 251-254. http://adsabs.harvard.edu/abs/1987JHATD...8..251Z
    [12]
    Bamber J L, Bindschadler R A. An improved elevation data set for climate and ice-sheet modeling: Validation with satellite imagery[J]. Annals of Glaciology, 1997, 25: 439-444. doi: 10.3189/S0260305500014427
    [13]
    Liu H, Jezek K, Li B. Development of Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach[J]. Journal of Geophysical Research, 1999, 104(B10): 23199-23213. doi: 10.1029/1999JB900224
    [14]
    Di Marzio J, Brenner A, Schutz R, et al. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica[R]. Colorado, USA: National Snow and Ice Data Center (Digital Media), 2007.
    [15]
    Bamber J L, Gomez-Dans J L, Griggs J A. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data - Part 1: Data and methods[J]. The Cryosphere, 2009, 3: 101-111. doi: 10.5194/tc-3-101-2009
    [16]
    Griggs J A, Bamber J L. A new 1 km digital elevation model of Antarctica derived from combined radar and laser data - Part 2: Validation and error estimates[J]. The Cryosphere, 2009, 3: 113-123. doi: 10.5194/tc-3-113-2009
    [17]
    Helm V, Humbert A, Miller H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2[J]. The Cryosphere, 2014, 8(4): 1539-1559. doi: 10.5194/tc-8-1539-2014
    [18]
    Wessel B, Huber M, Wohlfart C, et al. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2018, 139: 171-182. http://www.sciencedirect.com/science/article/pii/S0924271618300522
    [19]
    Slater T, Shepherd A, McMillan M, et al. A new digital elevation model of Antarctica derived from CryoSat-2 altimetry[J]. The Cryosphere, 2018, 12(4): 1551-1562. doi: 10.5194/tc-12-1551-2018
    [20]
    Hamilton G S, Spikes V B. Evaluating a satellite altimeter-derived digital elevation model of Antarctica using precision kinematic GPS profiling[J]. Global and Planetary Change, 2004, 42(1/4): 17-30. https://www.sciencedirect.com/science/article/pii/S0921818104000323
    [21]
    肖峰, 李斐, 张胜凯, 等. 联合CryoSat-2测高数据和地面高程数据建立东南极拉斯曼丘陵地区DEM[J]. 武汉大学学报: 信息科学版, 2017, 42(10): 1417-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201710012.htm

    Xiao F, Li F, Zhang S K, et al. DEM production for larsemann hills combining Cryosat-2 and ground-based elevation data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1417-1422(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201710012.htm
    [22]
    袁乐先, 李斐, 张胜凯, 等. 基于ICESat数据的南极冰盖DEM插值方法比较及精度分析[J]. 冰川冻土, 2015, 37(4): 946-953. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201504011.htm

    Yuan L X, Li F, Zhang S K, et al. Comparing the interpolation algorithms and analyzing the accuracy of a digital elevation model of the Antarctic Ice Sheet based on ICESat data[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 946-953(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201504011.htm
    [23]
    万雷, 周春霞, 鄂栋臣, 等. 基于InSAR和ICESat的南极冰盖地区DEM提取和精度分析[J]. 冰川冻土, 2015, 37(5): 1160-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201505004.htm

    Wan L, Zhou C X, E D C, et al. DEM generation and precision analysis of Antarctic ice sheet based on InSAR and ICESat data[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1160-1167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201505004.htm
    [24]
    Li F, Xiao F, Zhang S K, et al. DEM development and precision analysis for Antarctic ice sheet using Cryosat-2 altimetry data[J]. Chinese Journal of Geophysics, 2017, 60(3): 231-243. doi: 10.1002/cjg2.30041
    [25]
    黄科伟, 李斐, 张胜凯, 等. 南极冰盖DEM机载测高验证与分析——以西南极Thwaites冰川为例[J]. 测绘学报, 2016, 45(5): 544-551. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201605006.htm

    Huang K W, Li F, Zhang S K, et al. Validation and analysis of the Antarctic digital elevation models based on airborne altimetry: A case study of thwaites glacier, West Antarctica[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 544-551(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201605006.htm
    [26]
    Bamber J, Gomez-Dans J L. The accuracy of digital elevation models of the Antarctic continent[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 516-523. http://www.sciencedirect.com/science/article/pii/S0012821X05003729
    [27]
    墙强, 周春霞, 赵秋阳, 等. 基于CryoSat-2的东南极PANDA断面考察沿线DEM制作及精度分析[J]. 冰川冻土, 2016, 38(2): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201602019.htm

    Qiang Q, Zhou C X, Zhao Q Y, et al. DEM generation and analysis using CryoSat-2 data along the expedition route in PANDA transection, East Antarctica[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 445-452(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201602019.htm
    [28]
    詹蕾, 汤国安, 杨昕. SRTM DEM高程精度评价[J]. 地理与地理信息科学, 2010, 26(1): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201001009.htm

    Zhan L, Tang G A, Yang X. Evaluation of SRTM DEMs' elevation accuracy: A case study in Shaanxi Province[J]. Geography and Geo-Information Science, 2010, 26(1): 34-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201001009.htm
    [29]
    肖峰, 张胜凯, 鄂栋臣, 等. 4种南极数字高程模型的精度比较与分析[J]. 冰川冻土, 2014, 36(3): 640-648. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201403020.htm

    Xiao F, Zhang S K, E D C, et al. Precision comparison and analysis of the 4 Antarctic digital elevation models[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 640-648(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201403020.htm
    [30]
    Zwally H J, Schutz B, Abdalati W, et al. ICESat's laser measurement of polar ice, atmosphere, ocean and land[J]. Journal of Geodynamics, 2002, 34(3/4): 405-445. http://www.sciencedirect.com/science/article/pii/S026437070200042X
    [31]
    Wang X W, Cheng X, Gong P, et al. Earth science applications of ICESat/GLAS: A review[J]. International Journal of Remote Sensing, 2011, 32(23): 8837-8864. doi: 10.1080/01431161.2010.547533
    [32]
    Wingham D J, Francis C R, Baker S, et al. CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields[J]. Advances in Space Research, 2006, 37(4): 841-871. doi: 10.1016/j.asr.2005.07.027
    [33]
    Leprince S, Barbot S, Ayoub F, et al. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(6): 1529-1558. http://ieeexplore.ieee.org/document/4215064
    [34]
    Scherler D, Leprince S, Strecker M R. Glacier-surface velocities in alpine terrain from optical satellite imagery: Accuracy improvement and quality assessment[J]. Remote Sensing of Environment, 2008, 112(10): 3806-3819. doi: 10.1016/j.rse.2008.05.018
    [35]
    Wang F, Bamber J L, Cheng X. Accuracy and performance of CryoSat-2 SARIn mode data over antarctica[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(7): 1516-1520. http://ieeexplore.ieee.org/document/7083707/
    [36]
    Wouters B, Martinespañol A, Helm V, et al. Dynamic thinning of glaciers on the Southern Antarctic Peninsula[J]. Science, 2015, 348(6237): 899-903. doi: 10.1126/science.aaa5727
    [37]
    Shen Q, Wang H S, Shum C K, et al. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica[J]. Scientific Reports, 2018, 8(1): 4477-4484. doi: 10.1038/s41598-018-22765-0
    [38]
    Sutterley T C, Velicogna I, Rignot E, et al. Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques[J]. Geophysical Research Letters, 2015, 41(23): 8421-8428. doi: 10.1002/2014GL061940
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(598) PDF Downloads(639) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return