Citation: | Gu Yufeng, Zhang Daoyong, Bao Zhidong, Guo Haixiao, Zhou Liming, Ren Jihong. Lithology prediction of tight sandstone formation using GS-LightGBM hybrid machine learning model[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 224-234. doi: 10.19509/j.cnki.dzkq.2021.0416 |
[1] |
周林, 刘皓天, 周坤, 等. 致密砂岩储层"甜点"识别及评价方法[J]. 地质科技通报, 2020, 39(4): 165-173. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml
Zhou L, Liu H T, Zhou K, et al. "Sweet spot" identification and evaluation of tight sandstone reservoir[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 165-173(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml
|
[2] |
李峰峰, 郭睿, 余义常. 层序地层划分方法进展及展望[J]. 地质科技情报, 2019, 38(4): 215-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904022.htm
Li F F, Guo R, Yu Y C. Progress and prospect of the division of sequence stratigraphy[J]. Geological Science and Technology Information, 2019, 38(4): 215-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904022.htm
|
[3] |
刘惠民, 郑金凯, 赵文山, 等. 深层致密砂岩储层脆性指数评价新方法[J]. 地质力学学报2019, 25(4): 492-500. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904005.htm
Liu H M, Zheng J K, Zhao W S, et al. A new method for evaluation brittleness index of deep tight sandstone reservoir[J]. Journal of Geomechanics, 2019, 25(4): 492-500(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904005.htm
|
[4] |
韦阿娟. 渤海海域中生界火成岩岩性测井识别技术及应用[J]. 地质科技情报, 2015, 34(6): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506030.htm
Wei A J. Well-logging identification technique and its application in Mesozoic igneous rocks in Bohai Sea area[J]. Geological Science and Technology Information, 2015, 34(6): 207-213(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506030.htm
|
[5] |
赵建, 高福红. 测井资料交会图法在火山岩岩性识别中的应用[J]. 世界地质, 2003, 22(2): 136-140. doi: 10.3969/j.issn.1004-5589.2003.02.006
Zhao J, Gao F H. Application of crossplots based on well log data in identifying volcanic lithology[J]. Global Geology, 2003, 22(2): 136-140(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2003.02.006
|
[6] |
吴磊, 徐怀民, 季汉成. 基于交会图和多元统计法的神经网络技术在火山岩识别中的应用[J]. 石油地球物理勘探, 2006, 41(1): 81-86. doi: 10.3321/j.issn:1000-7210.2006.01.016
Wu L, Xu H M, Ji H C. Application of neural network technique based on crossplot and multielement statistics to recognition of volcanic rocks[J]. Oil Geophysical Prospecting, 2006, 41(1): 81-86(in Chinese with English abstract). doi: 10.3321/j.issn:1000-7210.2006.01.016
|
[7] |
范训礼, 戴航, 张新家, 等. 神经网络在岩性识别中的应用[J]. 测井技术, 1999, 23(1): 50-52. doi: 10.3969/j.issn.1004-1338.1999.01.012
Fan X L, Dai H, Zhang X J, et al. Application of neural network in lithology identification[J]. Well Logging Technology, 1999, 23(1): 50-52(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.1999.01.012
|
[8] |
李政宏, 刘永福, 张立强, 等. 数据挖掘方法在测井岩性识别中的应用[J]. 断块油气藏, 2019, 26(6): 713-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906008.htm
Li Z H, Liu Y F, Zhang L Q, et al. Application of data mining method in lithology identification using well log[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 713-718(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906008.htm
|
[9] |
Chen T, Guestrin C. XGBoost: A scalable tree boosting system[C]//Anon. Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. New York, USA: ACM, 2016.
|
[10] |
卢新卫, 金章东. 前馈神经网络的岩性识别方法[J]. 石油与天然气地质, 1999, 20(1): 82-84. doi: 10.3321/j.issn:0253-9985.1999.01.019
Lu X W, Jin Z D. Method of lithologic recognizing based on feedforward neural network[J]. Oil and Gas Geology, 1999, 20(1): 82-84(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.1999.01.019
|
[11] |
张洪, 邹乐君, 沈晓华. BP神经网络在测井岩性识别中的应用[J]. 地质与勘探, 2002, 38(6): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200206015.htm
Zhang H, Zou L J, Shen X H. The application of BP neural network in well lithology identification[J]. Geology and Prospecting, 2002, 38(6): 63-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200206015.htm
|
[12] |
林香亮, 朱建伟, 刘光涛, 等. 基于PCA-SVM的砂砾岩岩性识别[J]. 长江大学学报: 自然科学版, 2020, 17(1): 21-26. doi: 10.3969/j.issn.1673-1409.2020.01.005
Lin X L, Zhu J W, Liu G T, et al. Lithologic identification of glutenite based on PCA-SVM[J]. Journal of Yangtze University: Natural Science Edition, 2020, 7(1): 21-26(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1409.2020.01.005
|
[13] |
石锁, 余继峰, 曹慧涛, 等. 基于高斯核SVM的地层岩性识别: 以东濮凹陷上古生界碎屑岩为例[J]. 中国科技论文, 2020, 15(1): 112-118. doi: 10.3969/j.issn.2095-2783.2020.01.017
Shi S, Yu J F, Cao H T, et al. Reservoir lithology identification based on SVM using radial basis function: An example of Upper Paleozoic clastic rock in Dongpu Sag[J]. China Science Paper, 2020, 15(1): 112-118(in Chinese with English abstract). doi: 10.3969/j.issn.2095-2783.2020.01.017
|
[14] |
Dev V A, Eden M R. Formation lithology classification using scalable gradient boosted decision trees[J]. Computers & Chemical Engineering, 2019, 128: 392-404. http://www.sciencedirect.com/science/article/pii/S0098135419302200
|
[15] |
Sun Z, Jiang B, Li X, et al. A data-driven approach for lithology identification based on parameter-optimized ensemble learning[J]. Energies, 2020, 13(15): 3903. doi: 10.3390/en13153903
|
[16] |
Ke G L, Meng Q, Finley T, et al. Light GBM: A highly efficient gradient boosting decision tree[C]//Anon. Proceedings of the 31st international conference on neural information processing systems. California, USA: ACM, 2017.
|
[17] |
Zhang X X, Deng T, Jia G Z. Nuclear spin-spin coupling constants prediction based on XGboost and lightGBM algorithms[J]. Molecular Physics, 2019, 118(14): 1-10. doi: 10.1080/00268976.2019.1696478
|
[18] |
韩学辉, 卢时林, 支乐菲, 等. 应用最小二乘支持向量机识别J13井区杜家台油层岩性[J]. 特种油气藏, 2011, 18(6): 18-21. doi: 10.3969/j.issn.1006-6535.2011.06.005
Han X H, Lu S L, Zhi L F, et al. Identification of the lithology of Dujiatai Formation in Well J13 block with east squares support vector machine[J]. Special Oil and Gas Reservoirs, 2011, 18(6): 18-21(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2011.06.005
|
[19] |
邓呈祥, 高文利, 潘和平, 等. 庐枞矿集区科学钻探的岩性识别方法[J]. 物探与化探, 2015, 39(6): 1144-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201506008.htm
Deng C X, Gao W L, Pan H P, et al. Lithologic identification method in scientific drilling of the Luzong ore district[J]. Geophysical & Geochemical Exploration, 2015, 39(6): 1144-1149(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201506008.htm
|
[20] |
Tukey J W. Mathematics and the picturing of data[C]//Anon. Proceedings of the international congress of mathematicians. Vancouver, USA: BC, 1975.
|
[21] |
Han S, Horsfield B, Zhang J, et al. Hydrocarbon generation kinetics of lacustrine Yanchang shale in southeast Ordos Basin, North China[J]. Energy & Fuels, 2014, 28(9): 5632-5639. doi: 10.1021/ef501011b
|
[22] |
Liu H, Li X, Liao J, et al. Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin[J]. China Petroleum Science, 2013, 10(1): 50-54. doi: 10.1007/s12182-013-0248-7
|
[23] |
Li J, Zhou S, Li Y, et al. Effect of organic matter on pore structure of mature lacustrine organic-rich shale: A case study of the Triassic Yanchang shale, Ordos Basin, China[J]. Fuel, 2016, 185: 421-431. doi: 10.1016/j.fuel.2016.07.100
|