Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Yan Huiming, Chang Wei, Guo Xulei, Deng Zhengrong, Huang Kun. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 127-136. doi: 10.19509/j.cnki.dzkq.2022.0008
Citation: Yan Huiming, Chang Wei, Guo Xulei, Deng Zhengrong, Huang Kun. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 127-136. doi: 10.19509/j.cnki.dzkq.2022.0008

Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects

doi: 10.19509/j.cnki.dzkq.2022.0008
  • Received Date: 31 Oct 2021
    Available Online: 02 Mar 2022
  • A critical water diversion project may face serious water inrush problems during tunnel construction when it crosses the carbonate rock formations of Julongshan syncline.Characteristics of karst water flow system in Julongshan syncline were identified by multi-methods such as karst hydrogeological field survey, hydrochemistry and isotope analysis, to find out the hydrogeological conditions of water inrush into the tunnel and select one water diversion scheme with lower risk of karst water disaster.The results show that the aquifer system in Julongshan syncline has a multi-layer structure with an impermeable layer between two aquifers.The Lower Permian is mainly buried underground with weak karst development, while the Upper Triassic bare karst area forms a giant karst basin with multi-stage water flow system.Three tunnel plans were demonstrated in Julongshan syncline area.Plan A passes through the recharge area of the karst water system in the western syncline, in which the length of soluble rock the tunnel passes through is the lowest and all belong to buried karst.It avoids to cross the Triassic karst water basin in the profile, therefore the risk of water-gushing for Plan A is relatively low.However, Plan B and Plan C will cross the Triassic karst water basin with longer soluble rock section and the risk of suffering karst water-gushing is much higher.So, Plan A is recommended.This study can provide a scientific basis for comparison and selection of diversion tunnel line, and also has reference value for similar deep-buried long tunnel construction.

     

  • loading
  • [1]
    钮新强, 张传健. 复杂地质条件下跨流域调水超长深埋隧洞建设需研究的关键技术问题[J]. 隧道建设, 2019, 39(4): 523-536. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm

    Niu X Q, Zhang C J. Some key technical issues on construction of ultra-long deep-buried water conveyance tunnel under complex geological conditions[J]. Tunnel Construction, 2019, 39(4): 523-536(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm
    [2]
    Chang Q, Sun X, Zhou H, et al. A multivariate matrix model of analysing mine water bursting and its application[J]. Desalination and Water Treatment, 2018, 123: 20-26. doi: 10.5004/dwt.2018.22331
    [3]
    Yang Y N, Zhang Q, Xu M. Numerical simulation method utilization in water gushing yield forecasting of Paoziling Tunnel in Hunan Province, China[J]. Applied Mechanics & Materials, 2014, 580/583: 1392-1397.
    [4]
    Fan H B, Zhang Y H, He S Y, et al. Hazards and treatment of karst tunneling in Qinling-Daba mountainous area: Overview and lessons learnt from Yichang-Wanzhou railway system[J]. Environmental Earth Sciences, 2018, 77(19): 679-696. doi: 10.1007/s12665-018-7860-1
    [5]
    Xia W, Shi-Ru W. Study on water inflow estimation of highway tunnel karst cave in karst area[C]//20183rd International Conference on Smart City and Systems Engineering (ICSCSE), 2018.
    [6]
    汪云, 杨海博, 郑梦琪, 等. 岩溶区深埋隧洞水文地质概念模型及突水模式[J]. 人民黄河, 2019, 41(7): 126-130. doi: 10.3969/j.issn.1000-1379.2019.07.027

    Wang Y, Yang H B, Zheng M Q, et al. Hydrogeological conceptual model and water inflow pattern analysis of deep diversion tunnel in karst area[J]. Yellow River, 2019, 41(7): 126-130(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1379.2019.07.027
    [7]
    Zhu Q Q, Miao Q Q, Jiang S P. On karst water inrush (gushing) geological environment in Pingyang Tunnel[J]. Applied Mechanics and Materials, 2014, 580/583: 1008-1012. doi: 10.4028/www.scientific.net/AMM.580-583.1008
    [8]
    常威, 谭家华, 黄琨, 等. 地下水多元示踪试验在岩溶隧道水害预测中的应用: 以张吉怀高铁兰花隧道为例[J]. 中国岩溶, 2020, 39(3): 400-408. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm

    Chang W, Tan J H, Huang K, et al. Application of groundwater multi-element tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua Tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway[J]. Carsologica Ainica, 2020, 39(3): 400-408(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm
    [9]
    金新锋. 宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D]. 北京: 中国地质科学院, 2007.

    Jin X F. Regularity of karst development along the Yichang-Wanzhou railway and its infuence on tunnel construction[D]. Beijing: Chinese Academy of Geological Sciences, 2007(in Chinese with English abstract).
    [10]
    郭绪磊. 基于SAC改进模型的岩溶流域降水-径流过程模拟研究: 以宜昌泗溪流域为例[D]. 武汉: 中国地质大学(武汉), 2019.

    Guo X L. A case study on the simulation of precipitation and runoff process in karst basin based on modified SAC model[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in Chinese with English abstract).
    [11]
    韦澧佩. 岩溶水环境约束下的引水隧洞线路优选研究[D]. 成都: 成都理工大学, 2018.

    Wei L P. Research on the optimization of diversion tunnel route under the constraint of karst water environment: Take the wase segment of Mid-Yunnan Water Diversion Project as an example[D]. Chengdu: Chengdu University of Technology, 2018(in Chinese with English abstract).
    [12]
    钟玲敏, 许模, 吴明亮, 等. 多级水流系统耦合下深部岩溶分异研究: 以川东隔挡式构造区中梁山背斜南段为例[J]. 水文地质工程地质, 2018, 45(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201801007.htm

    Zhong L M, Xu M, Wu M L, et al. Development of deep karst under the coupling of multistage flow systems: A case of southern part of the Zhongliang Mountain anticline of the parallel barrier structure in eastern Sichuan[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 45-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201801007.htm
    [13]
    季怀松, 罗明明, 褚学伟, 等. 岩溶洼地内涝蓄水量与不同级次裂隙对溶质迁移影响的室内实验与模拟[J]. 地质科技通报, 2020, 39(5): 164-172. doi: 10.19509/j.cnki.dzkq.2020.0520

    Ji H S, Luo M M, Chu X W, et al. Laboratory experiment and simulation of solute transport affected by different grades of fissures and water storage of waterlogging in karst depression[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 164-172(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0520
    [14]
    罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054

    Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054
    [15]
    田清朝, 万军伟, 黄琨, 等. 高家坪隧道岩溶水系统识别及涌水量预测[J]. 安全与环境工程, 2016, 23(5): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htm

    Tian Q C, Wan J W, Huang K, et al. Karst water system identification and water inflow prediction in Gaojiaping Tunnel[J]. Safety and Environmental Enginerring, 2016, 23(5): 13-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htm
    [16]
    吴剑疆. 大埋深输水隧洞设计和施工中的关键问题探讨[J]. 水利规划与设计, 2020(4): 120-125. doi: 10.3969/j.issn.1672-2469.2020.04.029

    Wu J J. Discussion on key issues in design and construction of large buried depth water conveyance tunnel[J]. Water Resources Planning and Design, 2020(4): 120-125(in Chinese with English abstract). doi: 10.3969/j.issn.1672-2469.2020.04.029
    [17]
    Guillaume L, Roland L, Nicolas P, et al. Groundwater-flow characterization in a multilayered karst aquifer on the edge of a sedimentary basin in western France[J]. Journal of Hydrology, 2018, 566: S0022169418307030.
    [18]
    Qian J, Peng Y, Zhao W, et al. Hydrochemical processes and evolution of karst groundwater in the northeastern Huabei Plain, China[J]. Hydrogeology Journal, 2018, 26: 1721-1729. doi: 10.1007/s10040-018-1805-3
    [19]
    Marques J, Matos C, Carreira P, et al. Isotopes and geochemistry to assess shallow/thermal groundwater interaction in a karst/fissured-porous environment (Portugal): A review and reinterpretation[J]. Sustainable Water Resources Management, 2019, 5: 1525-1536. doi: 10.1007/s40899-017-0207-3
    [20]
    罗明明, 黄荷, 尹德超, 等. 基于水化学和氢氧同位素的峡口隧道涌水来源识别[J]. 水文地质工程地质, 2015, 42(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htm

    Luo M M, Huang H, Yin D C, et al. Source identification of water inrush in the Xiakou tunnel based on hydrochemistry and hydrogen-oxygen isotopes[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 7-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htm
    [21]
    Li P, Wu J, Tian R, et al. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China[J]. Mine Water and the Environment, 2018, 37: 222-237. doi: 10.1007/s10230-017-0507-8
    [22]
    武亚遵, 万军伟, 林云. 湖北宜昌西陵峡地区大气降雨氢氧同位素特征分析[J]. 地质科技情报, 2011, 30(3): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201103015.htm

    Wu Y Z, Wan J W, Lin Y. Characteristics of hydrogen and oxygen isotopes for precipitation in Xiling Gorge Region of Yichang, Hubei Province[J]. Geological Science and Technology Information, 2011, 30(3): 93-97(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201103015.htm
    [23]
    赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析[J]. 地质科技情报, 2018, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm

    Zhao C H, Liang Y P, Lu H P, et al. Hydrogen and oxygen isotopic characteristics and influencing factors of karst water in the Niangziguan spring area[J]. Geological Science and Technology Information, 2018, 37(5): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm
    [24]
    黄荷, 罗明明, 陈植华, 等. 香溪河流域大气降水稳定氢氧同位素时空分布特征[J]. 水文地质工程地质, 2016, 43(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htm

    Huang H, Luo M M, Chen Z H, et al. The spatial and temporal distribution of stable hydrogen and oxygen isotope of meteoric water in Xiangxi River basin[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 36-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(339) PDF Downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return