Citation: | Zhou Yuan, Yang Panrui, Guo Huirong, Yuan Min, Wang Zhe, Zhou Ping. Injecting n-BuOH to achieve density conversion of dense non-aqueous phase liquid: Pore-scale experimental simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 223-230. doi: 10.19509/j.cnki.dzkq.2022.0016 |
[1] |
任加国, 郜普闯, 徐祥健, 等. 地下水氯代烃污染修复技术研究进展[J]. 环境科学研究, 2021, 34(7): 1641-1653. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202107015.htm
Ren J G, Gao P G, Xu X J, et al. Advances in remediation technology for chlorinated hydrocarbons contamination of groundwater[J]. Research of Environmental Sciences, 2021, 34(7): 1641-1653(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202107015.htm
|
[2] |
郭亚敏. DNAPL污染物运移规律研究[D]. 北京: 中国矿业大学, 2019.
Guo Y M. Study on the migration law of dense non-aqueous phase liquids pollutants[J]. Beijing: China University of Mining and Technology, 2019(in Chinese with English abstract).
|
[3] |
蒲生彦, 唐菁, 侯国庆, 等. 缓释型化学氧化剂在地下水DNAPLs污染修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 791-799. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003023.htm
Pu S Y, Tang J, Hou G Q, et al. The application progress of sustained-release chemical oxidants in the remediation of DNAPLs contaminated groundwater[J]. Environmental Chemistry, 2020, 39(3): 791-799(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003023.htm
|
[4] |
Qin X S, Huang G H, Chekma A, et al. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites[J]. Science of the Total Environment, 2007, 381(1): 17-37.
|
[5] |
张蔚, 施小清, 吴剑锋, 等. 渗透率空间变异性对重非水相流体运移的影响[J]. 高校地质学报, 2013, 19(4): 677-682. doi: 10.3969/j.issn.1006-7493.2013.04.015
Zhang W, Shi X Q, Wu J F, et al. Impacts of the spatial variation of permeability on the transport of dense non-aqueous phase liquids in porous media[J]. Geological Journal of China Universities, 2013, 19(4): 677-682(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.04.015
|
[6] |
Essaid H I, Bekins B A, Cozzarelli I M. Organic contaminant transportand fate in the subsurface: Evolution of knowledge and understanding[J]. Water Resources Research, 2015, 51(7): 4861-4902. doi: 10.1002/2015WR017121
|
[7] |
Agaoglu B, Copty N K, Scheytt T, et al. Interphase mass transfer between fluids in subsurface formations: A review[J]. Advances in Water Resources, 2015, 79: 162-194. doi: 10.1016/j.advwatres.2015.02.009
|
[8] |
甘义群, 于凯, 周爱国, 等. 基于GasBench-IRMS的挥发性氯代烃碳氯同位素指纹特征分析[J]. 地质科技情报, 2013, 32(6): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm
Gan Y Q, Yu K, Zhou A G, et al. lsotopic fingerprint analysis of carbon and chlorine of volatile chlorinated hydrocarbons based on GasBench-IRMS[J]. Geological Science and Technology Information, 2013, 32(6): 110-115(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm
|
[9] |
张梦南, 李小倩, 周爱国, 等. 地下水中高氯酸盐来源的同位素示踪研究进展[J]. 地质科技情报, 2014, 33(4): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404027.htm
Zhang M N, Li X Q, Zhou A G, et al. Stable chlorine and multi-oxygen isotopic tracing of perchlorate in Groundwater: A review[J]. Geological Science and Technology Information, 2014, 33(4): 177-184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404027.htm
|
[10] |
燕永利, 陈杰, 张宁生, 等. 地下土壤、水中DNAPLs污染的修复技术研究进展[J]. 环境监测管理与技术, 2007(5): 38-42. doi: 10.3969/j.issn.1006-2009.2007.05.012
Yan Y L, Chen J, Zhang N S, et al. Progress in the remidiation technology for underground soil and aquifer contamination by DNAPLs[J]. The Administration and Technique of Environmental Monitoring, 2007(5): 38-42(in Chinese with English abstract). doi: 10.3969/j.issn.1006-2009.2007.05.012
|
[11] |
陈浙墩, 白静洁. 地下水污染治理技术的研究进展[J]. 环境与发展, 2017, 29(8): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201708051.htm
Chen Z D, Bai J J. Research progress of groundwater pollution control technology[J]. Environmental and Development, 2017, 29(8): 87-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201708051.htm
|
[12] |
Huo L L, Liu G S, Yang X, et al. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures[J]. Chemosphere, 2020, 252(8): 126620.
|
[13] |
Ramsburg C A, Pennell K D, Kibbey T C G, et al. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones[J]. Journal of Contaminant Hydrology, 2004, 74(1/4): 105-131.
|
[14] |
Talawat J, Sabatini D A, Tongcumpou C. Behavior of DNAPL mixture of organometallic and chlorinated solvent in the presence of surfactants and alcohols as density-modifying agents[J]. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 2013, 48: 1619-1627.
|
[15] |
Miller C T, Hill Ⅲ E H, Moutier M. Remediation of DNAPL-contaminated subsurface systems using density motivated mobilization[J]. Environmental Science Technology, 2000, 34: 719-724. doi: 10.1021/es990808n
|
[16] |
Hill Ⅲ E H, Moutier M, Alfaro J, et al. Remediation of DNAPL pools using dense brine barrier strategies[J]. Environmental Science Technology, 2001, 35: 3031-3039. doi: 10.1021/es001891d
|
[17] |
Roeder E, Falta R W. Modeling unstable alcohol flooding of DNAPL-contaminated columns[J]. Advances in Water Resources, 2001, 24: 803-819. doi: 10.1016/S0309-1708(00)00072-5
|
[18] |
Lunn S R D, Kueper B H. Risk reduction during chemical flooding: Preconditioning DNAPL density in situ prior to recovery by miscible displacement[J]. Environmental Science Technology, 1999, 33: 1703-1708. doi: 10.1021/es9804161
|
[19] |
Ramsburg C A, Pennell K D. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: Density conversion using a partitioning alcohol[J]. Environmental Science Technology, 2002, 36: 2082-2087. doi: 10.1021/es011357l
|
[20] |
Ramsburg C A, Pennell K D. Density-modified displacement for DNAPL source zone remediation: Density conversion and recovery in heterogeneous aquifer cells[J]. Environmental Science Technology, 2002, 36: 3176-3187. doi: 10.1021/es011403h
|
[21] |
Ramsburg C A, Pennell K D, Kibbey T C G, et al. Use of a Aurfactantstabilized emulsion to deliver 1-butanol for density-modified displacement of trichlorothene[J]. Environmental Science Technology, 2003, 37: 4246-4253. doi: 10.1021/es0210291
|
[22] |
Ramsburg C A, Pennell K D, Kibbey T C G, et al. Refinement of the density-modified displacement method for efficient treatment of trichlorothene source zones[J]. Journal of Contaminant Hydrology, 2004, 74: 105-131. doi: 10.1016/j.jconhyd.2004.02.008
|
[23] |
Sie C Y, Nguyen Q P. A pore-scale experimental study of non-aqueous foam for improving hydrocarbon miscible flooding[J]. Journal of Petroleum Science and Engineering, 2020, 195(10): 107-188.
|
[24] |
Das A, Mohanty K, Nguyen Q. A Pore-scale study of foam-microemulsion interaction during low tension gas flooding using microfluidics-tertiary recovery[J]. Journal of Petroleum Science and Engineering, 2021, 203(8): 108-196.
|
[25] |
Lü M, Liu Z, Jia L, et al. Visualizing pore-scale foam flow in micromodels with different permeabilities-science direct[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600(9): 123-124.
|
[26] |
Yang C, Dong J, Ren L, et al. Influencing factors on the stabilization of colloid biliquid aphrons and its effectiveness used for density modification of DNAPLs insubsurface environment[J]. Colloids Surfaces A: Physicochemical Engineering Aspects, 2018, 553: 439-445. doi: 10.1016/j.colsurfa.2018.05.093
|
[27] |
Yang C, Offiong N A, Chen X, et al. The role of surfactants in colloidal biliquid aphrons and their transport in saturated porous medium[J]. Environmental Pollution, 2020, 265: 114564. doi: 10.1016/j.envpol.2020.114564
|
[28] |
Yang C, Wei G, Bai J, et al. Preparation and application of polyaluminum chloride for demulsification of colloidal biliquid aphron and density modification for DNAPLs[J]. Separation and Purification Technology, 2020: 117791.
|
[29] |
Yang C, Offiong N A, Zhang C, et al. Mechanisms of irreversible density modification using colloidal biliquid aphron for dense nonaqueous phase liquids in contaminated aquifer remediation[J]. J. Hazard Mater., 2021, 415: 125667. doi: 10.1016/j.jhazmat.2021.125667
|
[30] |
曾宏斌, 王芙蓉, 罗京, 等. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征[J]. 地质科技通报, 2021, 40(5): 242-252. doi: 10.19509/j.cnki.dzkq.2021.0022
Zeng H B, Wang F R, Luo J, et al. Characteristics of pore structure of intersalt shale oil reservoir by low temperature nitrogen adsorption and high pressure mercury pressure methods in Qianjiang Sag[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 242-252(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0022
|
[31] |
王莉, 吴珍云, 尹宏伟, 等. 含盐沉积盆地挤压盐构造及其对油气成藏的意义[J]. 地质科技通报, 2021, 40(5): 136-150. doi: 10.19509/j.cnki.dzkq.2021.0037
Wang L, Wu Z Y, Yin H W, et al. Compressional salt structures of salt-bearing sedimentary basins and its significance to hydrocarbon accumulation[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 136-150(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0037
|
[32] |
Surhone L M, Tennoe M T, Henssonow S F, et al. Solvent red 164[M]. [S. l.]: Betascript Publishing, 2010.
|
[33] |
刘雄志, 杨兆平, 惠学智, 等. 小孔剩余油受力分析及数学模型的改进[J]. 大庆石油地质与开发, 2014, 33(2): 77-82. doi: 10.3969/J.ISSN.1000-3754.2014.02.016
Liu X Z, Yang Z P, Hui X Z, et al. Force analyses of the remained oil in the small pores and improvement of the mathematical model[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(2): 77-82(in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2014.02.016
|
[34] |
丁帅伟, 姜汉桥, 席怡, 等. 特高含水期剩余油微观力学成因及孔道选择机理[J]. 辽宁石油化工大学学报, 2018, 38(1): 45-49. doi: 10.3969/j.issn.1672-6952.2018.01.008
Ding S W, Jiang H Q, Xi Y, et al. Themicro mechanical cause and pore selection mechanism of remaining oil at ultra-high water cut period[J]. Journal of Liaoning Petrochemical University, 2018, 38(1): 45-49(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6952.2018.01.008
|