Citation: | Leng Zhichao, Du Yao, Tao Yanqiu, Huang Yanwen, Deng Yamin. Coexistence and controlling factors of ammonium and phosphorus in groundwater along the middle reaches of the Yangtze River[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 300-308. doi: 10.19509/j.cnki.dzkq.2022.0021 |
[1] |
Mitsch W J, Day J W, Zhang L, et al. Nitrate nitrogen retention in wetlands in the Mississippi River Basin[J]. Ecological Engineering, 2005, 24(4): 267-278. doi: 10.1016/j.ecoleng.2005.02.005
|
[2] |
陈新明, 马腾, 蔡鹤生, 等. 地下水氮污染的区域性调控策略[J]. 地质科技情报, 2013, 32(6): 130-143, 149. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306021.htm
Chen X M, Ma T, Cai H S, et al. Regional regulatory strategies for nitrogen contamination in groundwater[J]. Geological Science and Technology Information, 2013, 32 (6): 130-143, 149(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306021.htm
|
[3] |
高伟, 高波, 严长安, 等. 鄱阳湖流域人为氮磷输入演变及湖泊水环境响应[J]. 环境科学学报, 2016, 36(9): 3137-3145.
Gao W, Gao B, Yan C A, et al. Evolution of anthropogenic nitrogen and phosphorus input and lake water environment response in Poyang Lake Basin[J]. Journal of Environmental Sciences, 2016, 36(9): 3137-3145(in Chinese with English abstract).
|
[4] |
黄艳雯, 杜尧, 徐宇, 等. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报, 2020, 39(6): 165-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006018.htm
Huang Y W, Du Y, Xu Y, et al. Source and enrichment mechanism of ammoniumin shallow confined aquifer in the west of Dongting Plain[J]. Bulletin of Geological Scienceand Technology, 2020, 39(6): 165-174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006018.htm
|
[5] |
Du Y, Ma T, Deng Y M, et al. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China[J]. Environmental Science Processes and Impacts, 2017, 19(2): 161-172. doi: 10.1039/C6EM00531D
|
[6] |
Buss S R, Herbert A W, Morgan P, et al. A review of ammonium attenuation in soil and groundwater[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2004, 37(4): 347-359. doi: 10.1144/1470-9236/04-005
|
[7] |
Grimm M, Muller A, Hein G, et al. High phosphorus intake only slightly affects serum minerals, urinary pyridinium crosslinks and renal function in young women[J]. European Journal of Clinical Nutrition, 2001, 55: 153-161. doi: 10.1038/sj.ejcn.1601131
|
[8] |
Yoo K D, Kang S, Choi Y, et al. Sex, age, and the association of serum phosphorus with all-cause mortality in adults with normal kidney function[J]. American Journal of Kidney Diseases, 2016, 67: 79-88. doi: 10.1053/j.ajkd.2015.06.027
|
[9] |
Dhingra R, Sullivan L M, Fox C S, et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community[J]. Archives of Internal Medicine, 2007, 167(9): 879-885. doi: 10.1001/archinte.167.9.879
|
[10] |
孟伟, 于涛, 郑丙辉, 等. 黄河流域氮磷营养盐动态特征及主要影响因素[J]. 环境科学学报, 2007, 27(12): 2046-2051. doi: 10.3321/j.issn:0253-2468.2007.12.019
Meng W, Yu T, Zheng B H, et al. Dynamic characteristics and main influencing factors of the salt in the Yellow River Basin[J]. Journal of Environmental Sciences, 2007, 27(12): 2046-2051(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2468.2007.12.019
|
[11] |
王志齐, 李宝, 梁仁君, 等. 南四湖内源氮磷释放的对比研究[J]. 环境科学学报, 2013, 33(2): 487-493. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201302027.htm
Wang Z Q, Li B, Liang R J, et al. Comparative study of endogenous nitrogen and phosphorus release in Nansi Lake[J]. Journal of Environmental Sciences, 2013, 33(2): 487-493(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201302027.htm
|
[12] |
宋玉芝, 丰叶, 王锦旗, 等. 水体及沉积物氮磷水平对附植藻类的影响[J]. 环境科学学报, 2018, 38(12): 4721-4727. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201812020.htm
Song Y Z, Feng Y, Wang J Q, et al. Effect of water and sediment nitrogen and phosphorus levels on attached algae[J]. Journal of Environmental Sciences, 2018, 38(12): 4721-4727(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201812020.htm
|
[13] |
Meinikmann K, Hupfer M, Lewandowski J, et al. Phosphorus in groundwater discharge a potential source for lake eutrophication[J]. Journal of Hydrology, 2015, 524: 214-226. doi: 10.1016/j.jhydrol.2015.02.031
|
[14] |
Kazmierczak J, Müller S, Nilsson B, et al. Groundwater flow and heterogeneous discharge into a seepage lake: Combined use of physical methods and hydrochemical tracers[J]. Water Resources Research, 2016, 52: 9109-9130. http://dialog.proquest.com/professional/docview/1905773678?accountid=131175
|
[15] |
Hannappel S, Kopp C, Reijman R E. Groundwater as a source of phosphorus pollution in the lake Arend reply[J]. Hydrol Und Wasserbewirtsch, 2018, 62: 293-294.
|
[16] |
Driscoll C T, Whitall D, Aber J, et al. Nitrogen pollution in the Northeastern United States: Sources, effects, and management options[J]. BioScience, 2003, 53(4): 357-374. doi: 10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2
|
[17] |
Wells N S, Hakoun V, Brouyère S, et al. Multi-species measurements of nitrogen isotopic composition reveal the spatial constraints and biological drivers of ammonium attenuation across a highly contaminated groundwater system[J]. Water Research, 2016, 98: 363-375. doi: 10.1016/j.watres.2016.04.025
|
[18] |
Sanchez V G, Gutierrez C A, Gomez D S, et al. Pesticide residues monitoring in underground drinking water, Neuquen Province, Northern Patagonia, Argentina[J]. Revista Internacional de Contaminacion Ambiental, 2019, 35(3): 641-649. doi: 10.20937/RICA.2019.35.03.10
|
[19] |
Jiao J J, Wang Y, Cherry J A, et al. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China[J]. Environmental Science and Technology, 2010, 44(19): 7470-7475. doi: 10.1021/es1021697
|
[20] |
Kazmierczak J, Postma D, Müller S, et al. Groundwater-controlled phosphorus release and transport from sandy aquifer into lake[J]. Limnology and Oceanography, 2020, 65: 2188-2204. doi: 10.1002/lno.11447
|
[21] |
Norrman J, Sparrenbom C J, Berg M, et al. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N)values[J]. Applied Geochemistry, 2015, 61: 248-258. doi: 10.1016/j.apgeochem.2015.06.009
|
[22] |
Dubrovsky N M, Burow K R, Clark G M, et al. The quality of our nation's waters: Nutrients in the nation's streams and groundwater, 1992-2004[J]. U.S. Geological Survey Circular, 2010, 1350: 174. http://agris.fao.org/agris-search/search.do?recordID=US201300153654
|
[23] |
Jason W, Stephanie G L. A database of georeferenced nutrient chemistry data for mountain lakes of the Western United States[J]. Scientific Data, 2017, 4: 170069. doi: 10.1038/sdata.2017.69
|
[24] |
Zhang D, Wang X X, Zhou Z G. Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China[J]. International Joural of Environmental Reaserch and Public Health, 2017, 14(12): 1524. doi: 10.3390/ijerph14121524
|
[25] |
鲁宗杰, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义[J]. 地球科学, 2017, 42(5): 771-782. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705012.htm
Lu Z J, Deng Y M, Du Y, et al. Three-dimensional fluorescence characteristics of DOM in high-arsenic groundwater in Jianghan Plain[J]. Earth Sciences, 2017, 42 (5): 771-782(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705012.htm
|
[26] |
熊峰, 甘义群, 段艳华. 江汉平原地下水中氮素与砷迁移富集的相关性研究[J]. 安全与环境工程, 2015, 22(2): 39-43, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201502008.htm
Xiong F, Gan Y Q, Duan Y H. Correlation of nitrogen and enrichment of arsenic migration in groundwater in Jianghan Plain[J]. Safety and Environmental Engineering, 2015, 22 (2): 39-43, 48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201502008.htm
|
[27] |
Du Y, Deng Y M, Ma T, et al. Enrichment of geogenic ammonium in quaternary alluvial lacustrine aquifer systems: Evidence from carbon isotopes and DOM characteristics[J]. Environmental Science and Technology, 2020, 54(10): 6104-6114. doi: 10.1021/acs.est.0c00131
|
[28] |
Tao Y Q, Deng Y M, Du Y, et al. Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin[J]. Science of the Total Environment, 2020, 737: 139837. doi: 10.1016/j.scitotenv.2020.139837
|
[29] |
Fang J Y, Rao S, Zhao S Q. Human-induced long-term changes in the lakes of the Jianghan Plain, central Yangtze[J]. Frontiers in Ecology and the Environment, 2005, 3(4): 186-192. doi: 10.1890/1540-9295(2005)003[0186:HLCITL]2.0.CO;2
|
[30] |
Niu B B, Wang H H, Loaiciga H A, et al. Temporal variations of groundwater quality in the Western Jianghan Plain, China[J]. Science of the Total Environment, 2017, 578: 542-550. doi: 10.1016/j.scitotenv.2016.10.225
|
[31] |
Deng Y M, Li H J, Wang Y X, et al. Temporal variability of groundwater chemistry and relationship with water-table fluctuation in the Jianghan Plain, central China[J]. Procedia Earth Planet Science, 2014, 10: 100-103. doi: 10.1016/j.proeps.2014.08.018
|
[32] |
Singh K P, Malik A, Sinha S. Water quality assessement and apportionment of pollution sources of Gomti River (India)using multivariate statistical technique: A case study[J]. Analytica Chemica Acta, 2005, 538: 355-374. doi: 10.1016/j.aca.2005.02.006
|
[33] |
卜红梅, 刘文治, 张全发. 多元统计方法在金水河水质时空变化分析中的应用[J]. 资源科学, 2009, 31(3): 429-434. doi: 10.3321/j.issn:1007-7588.2009.03.012
Bu H M, Liu W Z, Zhang Q F. Application of multivariate statistical method in analysis of spatial temporal variation in Jinshui River[J]. Resource Science, 2009, 31 (3): 429-434(in Chinese with English abstract). doi: 10.3321/j.issn:1007-7588.2009.03.012
|
[34] |
Du Y, Deng Y M, Ma T, et al. Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems[J]. Science of the Total Environment, 2018, 645: 1159-1171. doi: 10.1016/j.scitotenv.2018.07.173
|
[35] |
戴九兰. 碘在土壤-植物系统中的生物有效性[D]. 山东青岛: 山东农业大学, 2004.
Dai J L. Bioeffectiveness of iodine in soil-plant systems[D]. Qingdao Shandong: Shandong Agricultural University, 2004(in Chinese with English abstract).
|
[36] |
Burgess W G, Hoque M A, Michael H A, et al. Vulnerability of deep groundwater in the Bengal aquifer system to contamination by arsenic[J]. Nature Geoscience, 2010, 3: 83-87. doi: 10.1038/ngeo750
|
[37] |
Li J X, Wang Y X, Xie X J, et al. Hydrogeochemistry of high iodine groundwater: A case study at the Datong Basin, northern China[J]. Environmental Science Processes and Impacts, 2013, 15(4): 848-859. doi: 10.1039/c3em30841c
|
[38] |
Liu R, Ma T, Zhang D T, et al. Spatial distribution and factors influencing the different forms of ammonium in sediments and pore water of the aquitard along the Tongshun River, China[J]. Environmental Pollution, 2020, 266: 115212. doi: 10.1016/j.envpol.2020.115212
|
[39] |
Li Z, Zhang T, Chen B, et al. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedologica Sinica, 2004, 41: 544-552. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200404007.htm
|
[40] |
Reszat T N, Hendry M J. Complexation of aqueous elements by doc in a clay aquitard[J]. Groundwater, 2007, 45(5): 542-553. doi: 10.1111/j.1745-6584.2007.00338.x
|
[41] |
Zou J Y, Varenyam A. Sources and dynamics of inorganic carbon within the upper reaches of the Xi River basin, southwest China[J]. Plos One, 2016, 11(8): e0160964. doi: 10.1371/journal.pone.0160964
|
[42] |
Dhiraj P, Sufia K K, Ashok K G, et al. Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India[J]. Plos One, 2015, 10(3): e0118735. doi: 10.1371/journal.pone.0118735
|
[43] |
Golterman H L. The calcium-and iron bound phosphate phase diagram[J]. Hydrobiologia, 1988, 159: 149-151. doi: 10.1007/BF00014722
|
[44] |
Heiberg L, Pedersen T V, Jensen H S, et al. A comparative study of phosphate sorption in lowland soils under oxic and anoxic conditions[J]. Journal of Environmental Quality, 2010, 39(2): 734-743. doi: 10.2134/jeq2009.0222
|
[45] |
Prem M, Hansen H C B, Wenzel W, et al. High spatial and fast changes of iron redox state and phosphorus solubility in a seasonally flooded temperate wetland soil[J]. Wetlands, 2015, 35(2): 237-246. doi: 10.1007/s13157-014-0608-0
|
[46] |
罗义鹏, 邓娅敏, 杜尧, 等. 长江中游故道区高碘地下水分布与形成机理[J]. 地球科学, 2021. doi: 10.3799/dqkx.2021.031
Luo Y P, Deng Y M, Du Y, et al. Distribution and formation mechanism of high iodine groundwater in the middle of the middle reaches of the Yangtze River[J]. Earth Sciences, 2021. doi: 10.3799/dqkx.2021.031 (in Chinese with English abstract).
|
[47] |
薛江凯, 邓娅敏, 杜尧, 等. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示[J]. 地球科学, 2021, 46(11): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111026.htm
Xue J K, Deng Y M, Du Y, et al. Characteristics of organic matter molecular composition in groundwater along the middle Yangtze River and its indication of iodine enrichment[J]. Earth Sciences, 2021, 46(11): 1-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111026.htm
|
[48] |
Huang Y W, Du Y, Ma T, et al. Dissolved organic matter characterization in high and low ammonium groundwater of Dongting Plain, central China[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111779. doi: 10.1016/j.ecoenv.2020.111779
|
[49] |
Neidhardt H, Schoeckle D, Schleinitz A, et al. Biogeochemical phosphorus cycling in groundwater ecosystems: Insights from South and Southeast Asian floodplain and delta aquifers[J]. Science of the Total Environment, 2018, 644: 1357-1370. doi: 10.1016/j.scitotenv.2018.07.056
|
[50] |
Nisbeth C S, Jessen S, Bennike O. Role of groundwater-borne geogenic phosphorus for the internal P release in shallow lakes[J]. Water, 2019, 11: 1783. doi: 10.3390/w11091783
|
[51] |
Nisbeth C S, Kidmose J, Weckstrom K B. Dissolved inorganicgeogenic phosphorus load to a groundwater-fed lake: Implications of terrestrial phosphorus cycling by groundwater[J]. Water, 2019, 11: 2213. doi: 10.3390/w11112213
|
[52] |
Liu R, Ma T, Qiu W K, et al. Effects of Fe oxides on organic carbon variation in the evolution of clayey aquitard and environmental significance[J]. Science of the Total Environment, 2019, 701: 134776. http://www.sciencedirect.com/science/article/pii/S0048969719347679
|
[53] |
Jones R I, Shaw P J, De H H. Effects of dissolved humic substances on the speciation of iron and phosphate at different pH and ionic strength[J]. Environmental Science and Technology, 1993, 27(6): 1052-1059. http://eurekamag.com/pdf.php?pdf=002363877
|
[54] |
Gerke J, Hermann R. Adsorption of orthophosphate to humic-Fe-complexes and to amorphous Fe-oxide[J]. Journal of Plant Nutrition and Soil Science, 1992, 155(3): 233-236. doi: 10.1002/jpln.19921550313/abstract
|