Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Peng Hongming, Yuan Youjin, Li Tongbang, Dong Gaofeng, Liu Yi, Ba Ruishou. Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026
Citation: Peng Hongming, Yuan Youjin, Li Tongbang, Dong Gaofeng, Liu Yi, Ba Ruishou. Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026

Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai

doi: 10.19509/j.cnki.dzkq.2022.0026
  • Received Date: 18 Nov 2021
    Available Online: 02 Mar 2022
  • Water inflow and drainage is one of the main factors affecting tunnel construction and safe operation.Finding out the source of groundwater inflow and drainage in tunnel is an important scientific basis for tunnel waterproof and water stop.The problem of water inflow and drainage of New Guanjiao Tunnel in Tianjun is serious.The groundwater discharge at the north outlet reaches 10 021 m3/d and the South outlet reaches 60 877 m3/d.There is a difference of nearly 50 000 m3/d in groundwater drainage.In order to find out the source of water inflow and drainage of Guanjiao tunnel and the reason for the great difference between the north and south water volume, we collecte the hydrogeochemical samples of the main groundwater and tunnel drainage in the tunnel based on the hydrogeological conditions.The results show that: the TDS of the drainage water at the north side of the tunnel is 0.44 g/L and the average hydrogen and oxygen isotopes are -52.7‰ and -8.3‰; TDS of the southern tunnel drainage is 0.85 g/L and the isotopes is -54.8‰ and -8.5‰; TDS of the crevice water is 0.32-1.22 g/L and the isotopes are -55.77‰ and -8.61‰; TDS of the karst water is 0.28-0.43 g/L and the isotopes are -50.92‰ and -8.13‰; TDS of the superpermafrost water is 0.26-0.48 g/L and the isotopes are -45.5‰ and -7.6‰.The main drainage of the north tunnel comes from karst water, the karst water accounts for 63%-80%, the crevice water accounts for 20%-37%;The main drainage of the south tunnel comes from crevice water, the karst water accounts for 12%-28%, the crevice water accounts for 72%-88%.The identification of water inflow source and water quantity can provide a scientific basis for the optimal setting and the implementation of water stop project during tunnel operation.

     

  • loading
  • [1]
    杨艳娜. 西南山区岩溶隧道涌突水灾害危险性评价系统研究[D]. 成都: 成都理工大学, 2009.

    Yang Y N. Resarch of karst tunnel water bursting hazard risk assessment system in the southwest mountainous area[D]. Chengdu: Chengdu University of Technology, 2009(in Chinese with English abstract).
    [2]
    金新锋. 宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D]. 北京: 中国地质科学院, 2007.

    Chen J F. Regularity of karst development along the Yichang-Wanzhou railway and its influence on tunnel construction[D]. Beijing: Chinese Academy of Geological Sciences, 2007(in Chinese with English abstract).
    [3]
    Lan X D, Zhang X, Yin Z C, et al. Mitigation of karst tunnel water inrush during operation in seasonal variation zone: Case study in Nanshibi Tunnel[J]. Journal of Performance of Constructed Facilities, 2021, 35(3): 04021010. doi: 10.1061/(ASCE)CF.1943-5509.0001573
    [4]
    王佳亮, 陈亮, 王崇艮. 兰渝线新龙凤隧道涌水分析[J]. 现代隧道技术, 2012, 49(4): 42-45. doi: 10.3969/j.issn.1009-6582.2012.04.009

    Wang J L, Chen L, Wang C G. Analysis of the water inflow in the new Longfen Tunnel on the Lanzhou-Chongqin railway[J]. Modern Tunnelling Technology, 2012, 49(4): 42-45(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6582.2012.04.009
    [5]
    张羽军. 湘桂铁路山乾隧道岩溶涌水涌泥原因分析及治理措施[J]. 铁道建筑, 2019, 59(2): 89-93. doi: 10.3969/j.issn.1003-1995.2019.02.22

    Zhang Y J. Cause analysis of water and mud gushing and treatment measures in Shanqian karst tunnel of Hunan-Guangxi railway[J]. Railway Engineering, 2019, 59(2): 89-93(in Chinese with English abstract). doi: 10.3969/j.issn.1003-1995.2019.02.22
    [6]
    Yang W M, Fang Z D, Yang X, et al. Experimental study of influence of karst aquifer on the law of water inrush in tunnels[J]. Water, 2018, 10(9): 1211. doi: 10.3390/w10091211
    [7]
    于正, 杨龙才, 宫全美, 等. 穿越近海破碎带隧道工程风险模糊评价和应用[J]. 地下空间与工程学报, 2019, 15(4): 1246-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201904037.htm

    Yu Z, Yang L C, Gong Q M, et al. Risk fuzzy assessment for off shore tunnels crossing fault zones and its application[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1246-1257(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201904037.htm
    [8]
    Chen S, Peng H Y, Yang C, et al. Investigation of the impacts of tunnel excavation on karst groundwater and dependent geo-environment using hydrological observation and numerical simulation: A case from karst anticline mountains of southeastern Sichuan Basin, China. [J]. Environmental Science and Pollution Research International, 2021, 28(30): 40203-40216. doi: 10.1007/s11356-021-13919-1
    [9]
    Farida M S, El-Dars E, Sami H M. Interpretation of hydrogeochemical data using hierarchical cluster analysis: A case study at Wadi El-Natrun, Egypt[J]. Journal of African Earth Sciences, 2020, 10: 103930.
    [10]
    武亚遵, 潘春芳, 林云, 等. 典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J]. 地质科技情报, 2018, 37(5): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805027.htm

    Wu Y Z, Pan C F, Lin Y, et al. Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical North China coalfield[J]. Geological Science and Technology Information, 2018, 37(5): 191-199(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805027.htm
    [11]
    Xu C H, Yu D D, Luo Z J. Recharge sources and genetic model of geothermal water in Tangquan, Nanjing, China[J]. Sustainability, 2021, 13(4): 4449.
    [12]
    Li D S, Cui B L, Wang Y, et al. Source and quality of groundwater surrounding the Qinghai Lake, NE Qinghai-Tibet Plateau[J]. Groundwater, 2021, 59(2): 245-255. doi: 10.1111/gwat.13042
    [13]
    马斌, 梁杏, 林丹, 等. 应用2H、18O同位素示踪华北平原石家庄包气带土壤水入渗补给及年补给量确定[J]. 地质科技情报, 2014, 33(3): 163-168, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htm

    Ma B, Liang X, Lin D, et al. Application of 2H-18O isotopic in tracing infiltration recharge of soil water and determination of annual recharge in Shijiazhuang vadose zone of North China Plain[J]. Geological Science and Technology Information, 2014, 33(3): 163-168, 174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htm
    [14]
    Saberinasr A, Morsali M, Hashemnejad A, et al. Determining the origin of groundwater elements using hydrochemical data(case study: Kerman water conveyance tunnel)[J]. Environmental Earth Sciences, 2019, 78(6): 198. doi: 10.1007/s12665-019-8182-7
    [15]
    张鹏, 端木辉, 徐勇, 等. 汤峪热田地热流体地球化学特征及其补给源分析[J]. 地质科技情报, 2016, 35(2): 192-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602037.htm

    Zhang P, Duan M H, Xu Y, et al. Analysis of Tangyu geothermal fluid geochemical characteristics and source of supply[J]. Geological Science and Technology Information, 2016, 35(2): 192-196(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602037.htm
    [16]
    Chen L, Wang G C, Hu F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, northwestern China[J]. Journal of Arid Land, 2014, 6(4): 378-388. doi: 10.1007/s40333-013-0249-9
    [17]
    青海省环境地质调查局. 青海南山关角日吉山地区岩溶水勘查报告[R]. 西宁: 青海省环境地质勘查局, 2017.

    Qinghai Environment Geological Exploration Bureau. Report of Qinghai Nanshan Guanjiao Rijishan karst water exploration[R]. Xining: Qinghai Environmental Geological Exploration Bureau, 2017(in Chinese).
    [18]
    高红杰. 关角特长隧道施工地质问题及成因分析[J]. 铁道标准设计, 2016, 60(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201603019.htm

    Gao H J. Geological problems in the construction of Guanjiao supper long tunnel and cause analysis[J]. Railway Standard Design, 2016, 60(3): 87-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201603019.htm
    [19]
    Wang J, Gu X Q, Liu T J, et al. Study on comprehensive treatment technology of high-speed railway passing through giant karst tunnel[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(5): 052021. doi: 10.1088/1755-1315/570/5/052021
    [20]
    谭忠盛, 王秀英, 万飞, 等. 关角隧道突涌水防治技术体系研究[J]. 土木工程学报, 2017, 50(增刊2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2001.htm

    Tan Z S, Wang X Y, Wan F, et al. Research on prevention and control technology system of sudden water inflow of Guanjiao Tunnel[J]. China Civil Engineering Journal, 2017, 50(S2): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2001.htm
    [21]
    Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170: 1088-1090. doi: 10.1126/science.170.3962.1088
    [22]
    彭红明, 许伟林, 何青, 等. 布哈河流域中上游地区水文地球化学与同位素特征[J]. 干旱区研究, 2015, 32(5): 1032-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201505028.htm

    Peng H M, Xu W L, He Q, et al. The features of hydrogeochemistry and isotope in the upper reaches of Buhahe basin[J]. Arid Zone Research, 2015, 32(5): 1032-1038(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201505028.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(371) PDF Downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return