Volume 42 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Yuan Shuqing, Sun Ronglin, Xing Jinbing, Xiao Wei. Experimental study on the electrical resistivity characteristics of sand under different testing conditions[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 257-263. doi: 10.19509/j.cnki.dzkq.2022.0101
Citation: Yuan Shuqing, Sun Ronglin, Xing Jinbing, Xiao Wei. Experimental study on the electrical resistivity characteristics of sand under different testing conditions[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 257-263. doi: 10.19509/j.cnki.dzkq.2022.0101

Experimental study on the electrical resistivity characteristics of sand under different testing conditions

doi: 10.19509/j.cnki.dzkq.2022.0101
  • Received Date: 19 Jan 2022
  • Accepted Date: 09 Mar 2022
  • Rev Recd Date: 25 Feb 2022
  • Objective

    The results of laboratory tests on the electrical resistivity of sand are widely used in the interpretation of field electrical resistivity tomography. However, the influences of testing conditions and the field implementations of relationship curves between the electrical resistivity and properties of sand need further research.

    Methods

    First, the electrical resistivity test device was developed by using the two-electrode method. Then, the influences of current type, alternating current (AC) frequency, voltage and grain size of sand on the relationship between electrical resistivity and water saturation (ρ-Sr), as well as electrical resistivity and salinity of the pore water (ρ-n), were studied.

    Results

    The results showed that an AC current frequency of 10 Hz and an input voltage of 1 V were recommended to reduce the test error of resistance. There was a power function between the electrical resistivity and water saturation (ρ-Sr), as well as electrical resistivity and salinity of pore water (ρ-n), under AC and direct current (DC). As DC might cause an electrolysis reaction of the electrodes of the sand column under the high salinity of pore water, the AC electrical method was suggested. When the water saturation is greater than 50%, the electrical resistivity difference caused by the grain size of sand becomes small. Moreover, the electrical resistivity did not decrease significantly with increasing water saturation, which suggested that a relatively stable interface of the electrical resistivity might exist in the unsaturated zone with 50% saturation rather than in the water table. When the salinity of pore water is greater than 2 g/L, the electrical resistivity of all five types of saturated sands did not decrease obviously with increasing salinity.

    Conclusion

    Research results comfirm the electrical resistivity method easily distinguishes fresh water from brackish water but has difficulty further subdividing brackish water, salt water and brine.

     

  • loading
  • [1]
    Ramalho E C, Khalil M A, Fernandes J, et al. Geophysical assessment of contamination due to explosives in an abandoned facility towards its hydrogeological characterization[J]. Environmental Earth Sciences, 2015, 74(1): 649-663. doi: 10.1007/s12665-015-4070-y
    [2]
    王泽亚, 徐亚, 董路, 等. 金属离子污染砂土复电阻率的时变特征及形成机制[J]. 中国环境科学, 2019, 39(3): 1147-1153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201903036.htm

    Wang Z Y, Xu Y, Dong L, et al. Complex resistivity of cationic metal contaminated sandy soils: Time-varying characteristics and formation mechanism[J]. China Environmental Science, 2019, 39(3): 1147-1153(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201903036.htm
    [3]
    Hermans T, Vandenbohede A, Lebbe L, et al. Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data[J]. Journal of Hydrology, 2012, 438/439(3): 168-180.
    [4]
    周越. 典型边坡滑坡地球物理特征与演化机理研究[D]. 长春: 吉林大学, 2021.

    Zhou Y. Study on geophysical characteristics and evolution mechanism of typical slope landslide[D]. Changchun: : Jilin University, 2021(in Chinese with English abstract).
    [5]
    刘晓, 彭友文, 袁志辉, 等. 高密度电法在堤坝渗漏监测中的模拟及应用[J]. 水利水电科技进展, 2021, 41(5): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202105012.htm

    Liu X, Peng Y W, Yuan Z H, et al. Modeling and application of high-density electrical method in dam leakage monitoring[J]. Advances in Science and Technology of Water Resources, 2021, 41(5): 71-75(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202105012.htm
    [6]
    Mohammed M A, Senosy M M, Abudeif A M. Derivation of empirical relationships between geotechnical parameters and resistivity using electrical resistivity tomography (ERT) and borehole data at Sohag University site, upper Egypt[J]. Journal of African Earth Sciences, 2019, 158(10): 103563.
    [7]
    韩鹏. 高密度电阻率法在探测不同充填类型溶洞中的正反演研究[J]. 地质与勘探, 2020, 56(6): 1219-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202006010.htm

    Han P. Forward modeling and inversion of the high-density resistivity method in detecting karst caves of different filling types[J]. Geology and Exploration, 2020, 56(6): 1219-1225(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202006010.htm
    [8]
    潘剑伟, 占嘉诚, 洪涛, 等. 地面核磁共振方法和高密度电阻率法联合找水[J]. 地质科技情报, 2018, 37(3): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803034.htm

    Pan J W, Zhan J C, Hong T, et al. Combined use of surface nuclear magnetic resonance and electrical resistivity imaging in detecting groundwater[J]. Geological Science and Technology Information, 2018, 37(3): 253-262(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803034.htm
    [9]
    郭蕾蕾, 魏良帅, 黄安邦, 等. 乌蒙山地区岩溶地下水流系统结构及其找水应用[J]. 地质科技通报, 2022, 41(1): 146-157. doi: 10.19509/j.cnki.dzkq.2022.0025

    Guo L L, Wei L S, Huang A B, et al. Structure of karst groundwater system and its water exploration in Wumeng Mountain area[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 146-157(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0025
    [10]
    Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62. doi: 10.2118/942054-G
    [11]
    Duan Z, Yan X S, Sun Q, et al. New models for calculating the electrical resistivity of loess affected by moisture content and NaCl concentration[J]. Environmental Science and Pollution Research, 2022, 29: 17280-17294. doi: 10.1007/s11356-021-16971-z
    [12]
    Hasan M F, Abuel-Naga H, Leong E C. A modified series-parallel electrical resistivity model of saturated sand/clay mixture[J]. Engineering Geology, 2021, 290: 106193. doi: 10.1016/j.enggeo.2021.106193
    [13]
    张虎元, 王少一, 赵天宇, 等. 利用高密度电阻率法进行盐渍土含水率的测定[J]. 水文地质工程地质, 2012, 39(1): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201201019.htm

    Zhang H Y, Wang S Y, Zhao T Y, et al. Determination of moisture content in saline soil by high density resistivity method[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 95-101(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201201019.htm
    [14]
    Abidin M, Saad R, Wijeyesekera D C, et al. The influences of basic physical properties of clayey silt and silty sand on its laboratory electrical resistivity value in loose and dense conditions[J]. Sains Malaysiana, 2017, 46(10): 1959-1969.
    [15]
    Yoon G L, Oh M H, Park J B. Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer[J]. Environmental Geology, 2002, 43: 18-28.
    [16]
    罗述伟. 钠盐盐渍土的电阻率特性分析[D]. 西安: 西北农林科技大学, 2019.

    Luo S W. Analysis of the electrical resistivity characteristics of sodium salt saline soil[D]. Xi'an: Northwest A & F University, 2019(in Chinese with English abstract).
    [17]
    Chen B, Garré S, Liu H, et al. Two-dimensional monitoring of soil water content in fields with plastic mulching using electrical resistivity tomography[J]. Computers and Electronics in Agriculture, 2019, 159: 84-91.
    [18]
    Mares R, Barnard H R, Mao D Q, et al. Examining diel patterns of soil and xylem moisture using electrical resistivity imaging[J]. Journal of Hydrology, 2016, 536: 327-338.
    [19]
    Beff L, Günther T, Vandoorne B, et al. Three-dimensional monitoring of soil water content in a maize field using electrical resistivity tomography[J]. Hydrology and Earth System Sciences, 2013, 17(7): 595-609.
    [20]
    Mao D Q, Revil A, Hort R D, et al. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments[J]. Journal of Hydrology, 2015, 530: 1-14.
    [21]
    Han T, Best A I, Sothcott J, et al. Relationships among low frequency (2 Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones[J]. Journal of Applied Geophysics, 2015, 112: 279-289.
    [22]
    申纪伟. 重金属锌污染砂的交流阻抗特性研究[D]. 太原: 太原理工大学, 2015.

    Shen J W. Study on AC impedance characteristics of heavy metal zinc-contaminated sand[D]. Taiyuan: Taiyuan University of Technology, 2015(in Chinese with English abstract).
    [23]
    董晓强, 黄凤凤, 苏楠楠, 等. 非饱和黄土受压过程中交流电阻率特性试验研究[J]. 岩石力学与工程学报, 2015, 34(1): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501021.htm

    Dong X Q, Huang F F, Shu N N, et al. Expermental study of AC electrical resistivity of unsaturated loess during compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 189-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501021.htm
    [24]
    Personna Y R, Slater L, Ntarlagiannis D, et al. Complex resistivity signatures of ethanol in sand-clay mixtures[J]. Journal of Contaminant Hydrology, 2013, 149: 76-87.
    [25]
    周蜜, 王建国, 黄松波, 等. 土壤电阻率测量影响因素的试验研究[J]. 岩土力学, 2011, 32(11): 3269-3275. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111014.htm

    Zhou M, Wang J G, Huang S B, et al. Experimental investigation on influencing factors in soil resistivity measurement[J]. Rock and Soil Mechanics, 2011, 32(11): 3269-3275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111014.htm
    [26]
    刘晓凤, 邱斌, 刘德, 等. 饱和砂的交流电阻率特性研究[J]. 太原理工大学学报, 2014, 45(5): 653-656. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201405018.htm

    Liu X F, Qiu B, Liu D, et al. Study on AC electrical resistivity of saturated sand[J]. Journal of Taiyuan University of Technology, 2014, 45(5): 653-656(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201405018.htm
    [27]
    Xu D, Sun R L, Yeh T C J, et al. Mapping soil layers using electrical resistivity tomography and validation: Sandbox experiments[J]. Journal of Hydrology, 2019, 575: 523-536.
    [28]
    Jiang L Q, Sun R L, Yeh T C J, et al. Inverse modeling of different stimuli and hydraulic tomography: A laboratory sandbox investigation[J]. Journal of Hydrology, 2021, 603: 127108.
    [29]
    梁杏, 郭会荣, 孙蓉琳. 水文地质学基础实验实习教程[M]. 第3版. 北京: 地质出版社, 2019.

    Liang X, Guo H R, Sun R L. Experiment andpractical textbook of fundamentals of hydrorogeology[M]. Third Edition. Beijing: Geological Publishing House, 2019(in Chinese).
    [30]
    吴迪, 王炳辉, 周爱兆. 饱和砂土电阻率的测试方法研究[J]. 江苏科技大学学报: 自然科学版, 2015, 29(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201502016.htm

    Wu D, Wang B H, Zhou A Z. Study on the test method of saturated sand resistivity[J]. Journal of Jiangsu University of Science and Technology: Natural Science Edition, 2015, 29(2): 186-192(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201502016.htm
    [31]
    刘晓凤, 申纪伟, 张少华, 等. 非饱和铜污染砂的交流电阻率特性[J]. 广西大学学报: 自然科学版, 2014, 39(4): 833-840. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201404021.htm

    Liu X F, Shen J W, Zhang S H, et al. AC electrical resistivity properties of unsaturated sand polluted by copper[J]. Journal of Guangxi University: Natural Science Edition, 2014, 39(4): 833-840(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201404021.htm
    [32]
    于天仁, 季国亮, 李成保. 土壤和水研究中的电化学方法[M]. 北京: 科学出版社, 1991.

    Yu T R, Ji G L, Li C B. Electrochemical methods in soil and water research[M]. Beijing: Science Press, 1991(in Chinese).
    [33]
    Dietrich S, Carrera J, Weinzettel P, et al. Estimation of specific yield and its variability by electrical resistivity tomography[J]. Water Resources Research, 2018, 54(11): 8653-8673.
    [34]
    宋志伟, 董晓强, 高宜涛, 等. 重金属锌污染砂的交流电阻率特性试验[J]. 土木建筑与环境工程, 2015, 37(5): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201505009.htm

    Song Z W, Dong X Q, Gao Y T, et al. Experimental analysis of AC resistivity properties of zinc contaminated sand[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(5): 60-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201505009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(187) PDF Downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return