Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Liang Xiao, Ma Shaoguang, Li Guoqin, Xia Guoyong, Liu Ruolin, Ni Gensheng, Zhang Menglin, Kou Yilong, Yuan Cuiping, Chen Jia. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on Well W-207, Weiyuan area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159
Citation: Liang Xiao, Ma Shaoguang, Li Guoqin, Xia Guoyong, Liu Ruolin, Ni Gensheng, Zhang Menglin, Kou Yilong, Yuan Cuiping, Chen Jia. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on Well W-207, Weiyuan area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159

Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on Well W-207, Weiyuan area, Sichuan Basin

doi: 10.19509/j.cnki.dzkq.2022.0159
  • Received Date: 15 Jan 2022
    Available Online: 10 Nov 2022
  • To deeply analyze the thalassochemical conditions and organic matter enrichment mechanism during the Early Cambrian (541-509 Ma)and actively evaluate the potential of shale gas resources of the Lower Cambrian Qiongzhusi Formation(Fm) in the southwestern Sichuan Basin, based on the analysis of the petrology, organic geochemistry, element characteristics, pore structure and adsorption capacity of Qiongzhusi Formation, Well W-207, Weiyuan area, this study has discussed the Early Cambrian paleo-ocean environment, organic matter enrichment control factors and gas-bearing properties of shale gas in the upslope area of the Upper Yangtze Platform. Sedimentary cycle shows that multiple interactive conversioncycles of deep-water continental shelf and shallow-water continental shelf are developed during the fine-grained deposition period of Qiongzhusi Formation under the control of eustasy. In particular, the slope turbidite (fan) and gravity flow sediments indicate that shallow-water continental shelf facies are dominant, and the wells in the upslope of the Weiyuan area are not in deep-water for a long time, with the sedimentary thickness of organic-rich black shale limited. Organic geochemistry evidence indicates that the organic matter of Qiongzhusi Formation in Well W-207 is mainly Type-Ⅰ kerogen, with a high degree of thermal evolution, fewer residual hydrocarbons and a low hydrocarbon generation capacity. The redox parameters indicate that the marine environment on the upslope has a medium restrictive degree, and there is a certain degree of upwelling. The seawater has experienced the transformation process of "anoxic-oxidation-anoxic-secondary oxidation- oxidation". Therefore, the paleo-ocean productivity level in the upslope area is generally low, with an obvious downward trend from bottom to top. The pore structure and nitrogen adsorption curve show that the reservoirs of the Qiongzhusi Formation are mainly complex and irregular slit pores. The methane adsorption capacity is positively correlated with TOC but negatively correlated with temperature, indicating that the high-pressure and high-temperature conditions generally faced by the Qiongzhusi Fm are not suitable for methane adsorption. As a result, the geological conditions of shale gas for Qiongzhusi Fm in the upslope area are complex. With high exploration risk, this study suggests that the resource evaluation direction should change to the intracratonic sag (downslope area), which is characterized by deep-water continental shelf facies.

     

  • loading
  • [1]
    孙玮, 刘树根, 冉波, 等. 四川盆地及周缘地区牛蹄塘组页岩气概况及前景评价[J]. 成都理工大学学报: 自然科学版, 2012, 39(2): 170-175. doi: 10.3969/j.issn.1671-9727.2012.02.009

    Sun W, Liu S G, Ran B, et al. General situation and prospect evaluation of the shale gas in Niutitang Formation of Sichuan Basin and its surrounding areas[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2012, 39(2): 170-175(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2012.02.009
    [2]
    黄金亮, 邹才能, 李建忠, 等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J]. 石油勘探与开发, 2012, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm

    Huang J L, Zou C N, Li J Z, et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(1): 69-75(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm
    [3]
    胡琳, 朱炎铭, 陈尚斌, 等. 中上扬子地区下寒武统筇竹寺组页岩气资源潜力分析[J]. 煤炭学报, 2012, 37(11): 1871-1877. doi: 10.13225/j.cnki.jccs.2012.11.003

    Hu L, Zhu Y M, Chen S B, et al. Resource potential analysis of shale gas in Lower Cambrian Qiongzhusi Formation in middle & upper Yangtze region[J]. Journal of China Coal Society, 2012, 37(11): 1871-1877(in Chinese with English abstract). doi: 10.13225/j.cnki.jccs.2012.11.003
    [4]
    梁霄, 李香华, 徐剑良, 等. 从优质烃源岩到储层: 构造-沉积分异格局下的四川盆地中西部下寒武统页岩气勘探前景[J]. 天然气工业, 2021, 41(5): 30-41. doi: 10.3787/j.issn.1000-0976.2021.05.004

    Liang X, Li X H, Xu J L, et al. Exploration prospects of Lower Cambrian shale gas in the central-western Sichuan Basin under the pattern of tectonic-depositional differentiation: From high-quality source rocks to reservoirs[J]. Natural Gas Industry, 2021, 41(5): 30-41(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.05.004
    [5]
    苗凤彬, 彭中勤, 汪宗欣, 等. 雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及其主控因素[J]. 地质科技通报, 2020, 39(2): 31-42. doi: 10.19509/j.cnki.dzkq.2020.0204

    Miao F B, Peng Z Q, Wang Z X, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, western margin of Xuefeng Uplift[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 31-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0204
    [6]
    Zhu B, Jiang S Y, Pi D H, et al. Trace elements characteristics of black shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for redox and open vs. restricted basin conditions[J]. Journal of Earth Science, 2018, 29(2): 342-352. doi: 10.1007/s12583-017-0907-5
    [7]
    Xiao S H, Zhang Y, Knoll A H, et al. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite[J]. Nature, 1998, 391: 553-558. doi: 10.1038/35318
    [8]
    Zhu M, Gehling J G, Xiao S, et al. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia[J]. Geology, 2008, 36(11): 867-870. doi: 10.1130/G25203A.1
    [9]
    Raven M R, Keil R G, Webb S M. Microbial sulfate reduction and organic sulfur formation in sinking marine particles[J]. Science, 2021, 371: 178-181. doi: 10.1126/science.abc6035
    [10]
    Logan G A, Hayes J M, Hieshima G B, et al. Terminal Proterozoic reorganization of biogeochemical cycles[J]. Nature, 1995, 376: 53-56. doi: 10.1038/376053a0
    [11]
    Scott C, Lyons T W, Kker A B, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452: 456-459. doi: 10.1038/nature06811
    [12]
    Chang C, Hu W, Fu Q, et al. Characterization of trace elements and carbon isotopes across the Ediacaran-Cambrian boundary in Anhui Province, South China: Implications for stratigraphy and paleoenvironment reconstruction[J]. Journal of Asian Earth Science, 2016, 125: 58-70. doi: 10.1016/j.jseaes.2016.05.014
    [13]
    Jin C, Li C, Algeo T J, et al. Controls on organic matter accumulation on the Early Cambrian western Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2020, 111: 75-87. doi: 10.1016/j.marpetgeo.2019.08.005
    [14]
    Bush A M, Bambach R K, Daley G M. Changes in theoretical ecospace utilization in marine fossil assemblages between the Mid-Paleozoic and Late Cenozoic[J]. Paleobiology, 2007, 33(1): 76-97. doi: 10.1666/06013.1
    [15]
    Shu D, Isozaki Y, Zhang X L, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895. doi: 10.1016/j.gr.2013.09.001
    [16]
    赵坤, 李婷婷, 朱光有, 等. 下寒武统优质烃源岩的地球化学特征与形成机制: 以鄂西地区天柱山剖面为例[J]. 石油学报, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm

    Zhao K, Li T T, Zhu G Y, et al. Geochemical characteristics and formation mechanism of high-quality Lower Cambrian source rocks: A case study of the Tianzhushan profile in western Hubei[J]. Acta Petrolei Sinica, 2020, 41(1): 13-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm
    [17]
    周国晓, 魏国齐, 胡国艺, 等. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202004007.htm

    Zhou G X, Wei G Q, Hu G Y, et al. The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 498-506(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202004007.htm
    [18]
    Zhang B, Yao S, Wignall P B, et al. Widespread coastal upwelling along the eastern Paleo-Tethys Margin (South China) during the Middle Permian (Guadalupian): Implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2018, 97: 113-126. doi: 10.1016/j.marpetgeo.2018.06.025
    [19]
    Zhai L, Wu C, Ye Y, et al. Marine redox variations during the Ediacaran-Cambrian transition on the Yangtze Platform, South China[J]. Geological Journal, 2018, 53: 58-79.
    [20]
    Feng L, Li C, Huang J, et al. A sulfate control on marine mid-depth Euxinia on the Early Cambrian (Ca. 529-521Ma) Yangtze Platform, South China[J]. Precambrian Res., 2014, 246: 123-133. doi: 10.1016/j.precamres.2014.03.002
    [21]
    Guo Q, Strauss H, Zhu M, et al. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian transition[J]. Precambrian Research, 2013, 225: 209-217. doi: 10.1016/j.precamres.2011.10.003
    [22]
    Wang S, Zou C, Dong D, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672. doi: 10.1016/j.marpetgeo.2015.07.009
    [23]
    范海经, 邓虎成, 伏美燕, 等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报, 2021, 39(4): 1004-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104018.htm

    Fan H J, Deng H C, Fu M Y, et al. Sedimentary characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1004-1019 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104018.htm
    [24]
    刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报: 自然科学版, 2013, 40(5): 511-520. doi: 10.3969/j.issn.1671-9727.2013.05.03

    Liu S G, Sun W, Luo Z L, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2013, 40(5): 511-520(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2013.05.03
    [25]
    侯明才, 邢凤存, 徐胜林, 等. 上扬子E-C转换期古地理格局及其地球动力学机制探讨[J]. 沉积学报, 2017, 35(5): 902-917. doi: 10.14027/j.cnki.cjxb.2017.05.004

    Hou M C, Xing F C, Xu S L, et al. Paleogeographic patterns of E-C transition period in the upper Yangtze and the geodynamic mechanism[J]. Acta Sedimentologica Sinica, 2017, 35(5): 902-917(in Chinese with English abstract). doi: 10.14027/j.cnki.cjxb.2017.05.004
    [26]
    Jiang G, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China): Paleogeographic implications[J]. Geology, 2003, 31(10): 917-920. doi: 10.1130/G19790.1
    [27]
    Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
    [28]
    Li Z X, Evans D A D, Halverson G P. Neoproterozoic glaciations in a revised global paleogeography from the breakup of Rodinia to the assembly of Gondwana land[J]. Sedimentary Geology, 2013, 294: 219-232. doi: 10.1016/j.sedgeo.2013.05.016
    [29]
    Yao W H, Li Z X, Li W X, et al. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin, South China[J]. Gondwana Research, 2015, 28(4): 1449-1465. doi: 10.1016/j.gr.2014.10.018
    [30]
    Chen Q, Sun M, Long X P, et al. Provenance study for the Paleozoic sedimentary rocks from the west Yangtze Block: Constraint on possible link of South China to the Gondwana supercontinent reconstruction[J]. Precambrian Research, 2018, 309: 271-289. doi: 10.1016/j.precamres.2017.01.022
    [31]
    Li C, Shi W, Cheng M, et al. The redox structure of Ediacaran and Early Cambrian oceans and its controls[J]. Science Bulletin, 2020, 65: 2141-2149. doi: 10.1016/j.scib.2020.09.023
    [32]
    Ding Y, Li Z W, Liu S G, et al. Sequence stratigraphy and tectono-depositional evolution of a Late Ediacaran epeiric platform in the upper Yangtze area, South China[J]. Precambrian Research, 2021, 354: 106077. doi: 10.1016/j.precamres.2020.106077
    [33]
    Wang R R, Xu Z Q, Santosh M, et al. Late Neoproterozoic magmatism in South Qinling, Central China: Geochemistry, zircon U-Pb-Lu-Hf isotopes and tectonic implications[J]. Tectonophysics, 2016, 683: 43-61. doi: 10.1016/j.tecto.2016.05.050
    [34]
    李智武, 冉波, 肖斌, 等. 四川盆地北缘震旦纪-早寒武世隆-坳格局及其油气勘探意义[J]. 地学前缘, 2019, 26(1): 59-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901008.htm

    Li Z W, Ran B, Xiao B, et al. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin, central China and its implications for hydrocarbon exploration[J]. Earth Science Frontiers, 2019, 26(1): 59-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901008.htm
    [35]
    王瀚. 上扬子北缘震旦纪-早寒武世沉积-构造格局及其油气地质意义[D]. 成都: 成都理工大学, 2020.

    Wang H. Sedimentary structural pattern and its significance of petroleum geology from Sinian to Early Cambrian in northern margin of Upper Yangtze[D]. Chengdu: Chengdu University of Technology, 2020 (in Chinese with English abstract).
    [36]
    李承森. 生物进化的重大事件: 陆地植物的起源及其研究的新进展[J]. 中国科学基金, 1994 (4): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199404002.htm

    Li C S. Origin of lang plants is an important event of life evolution[J]. Bulletin of National Natural Science Foundation of China, 1994 (4): 7 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199404002.htm
    [37]
    夏国栋, 冉波, 刘树根, 等. 绵阳-长宁拉张槽北段麦地坪组烃源岩特征: 以绵竹清平剖面为例[J]. 成都理工大学学报: 自然科学版, 2018, 45(1): 14-26. doi: 10.3969/j.issn.1671-9727.2018.01.02

    Xia G D, Ran Bo, Liu S G, et al. Characteristics of hydrocarbon source rocks of the Lower Cambrian Maidiping Formation in northern Mianyang-Changning intracratonic sag, Sichuan, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2018, 45(1): 14-26. doi: 10.3969/j.issn.1671-9727.2018.01.02
    [38]
    梁霄. 川西坳陷北段复杂地质构造背景下深层海相油气成藏过程研究[D]. 成都: 成都理工大学, 2022.

    Liang X. The deep marine hydrocarbon accumulation process under complex tectonic background in the northern segment of western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2020(in Chinese with English abstract).
    [39]
    张振苓, 邬立言, 脱奇, 等. 烃源岩热解分析参数Tmax异常值的还原[J]. 石油勘探与开发, 2007, 34(5): 580-584. doi: 10.3321/j.issn:1000-0747.2007.05.011

    Zhang Z L, Wu L Y, Tuo Qi, et al. Abnormal value recovery of maturity parameter Tmax for rock-eval[J]. Petroleum Exploration and Development, 2007, 34(5): 580-584(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2007.05.011
    [40]
    Goldberg T, Strauss H, Guo Q, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 175-193. doi: 10.1016/j.palaeo.2007.03.015
    [41]
    Schoepfer S D, Shen J, Wei H, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Review, 2015, 149: 23-52. doi: 10.1016/j.earscirev.2014.08.017
    [42]
    Chen L, Zhong H, Hu R Z, et al. Composition of organic carbon isotope of Early Cambrian black shale in the Xiang-Qian area and its significances[J]. Journal of Mineralogy and Petrology, 2006, 26: 81-85.
    [43]
    Guo Q, Shields G A, Liu C, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 194-216. doi: 10.1016/j.palaeo.2007.03.016
    [44]
    Och L M, Shields-Zhou G A, Poulton S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China[J]. Precambrian Research, 2013, 225: 166-189. doi: 10.1016/j.precamres.2011.10.005
    [45]
    Pi D, Liu C, Shields-Zhou G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metal enrichments[J]. Precambrian Research, 2013, 225: 218-229.
    [46]
    Spangenberg J E, Bagnoud-Velásquez M, Boggiani P C, et al. Redox variations and bioproductivity in the Ediacaran: Evidence from inorganic and organic geochemistry of the Corumbá Group, Brazil[J]. Gondwana Research, 2014, 26: 1186-1207.
    [47]
    Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94: 57-72.
    [48]
    Kraal P, Slomp C P, Forster A, et al. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295: 42-54.
    [49]
    Westermann S, Stein M, Matera V, et al. Rapid changes in the redox conditions of the western Tethys Ocean during the early Aptian oceanic anoxic event[J]. Geochimica et Cosmochimica Acta, 2013, 121: 467-486.
    [50]
    März C, Poulton S W, Beckmann B, et al. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters[J]. Geochimica et Cosmochimica Acta, 2008, 72: 3703-3717.
    [51]
    Algeo T J, Ingall E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256: 130-155.
    [52]
    Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111: 111-129.
    [53]
    Algeo T, Shen Y, Zhang T, et al. Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian-Triassic boundary: Evidence for upwelling of sulfidic deep-ocean water masses[J]. Geochemistry Geophysics Geosystems, 2008, 9(4): 5-6.
    [54]
    Zhang J, Fan T, Algeo T J, et al. Paleo-marine environments of the Early Cambrian Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 66-79.
    [55]
    Shen J, Schoepfer S D, Feng Q, et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery[J]. Earth-Science Review, 2015, 149: 136-162.
    [56]
    Reinhard C T, Planavsky N J, Gill B C, et al. Evolution of the global phosphorus cycle[J]. Nature, 2016, 541: 386-389.
    [57]
    Stroobants N, Dehairs F, Goeyens L, et al. Barite formation in the southern ocean water column[J]. Marine Chemistry, 1991, 35: 411-421.
    [58]
    Breymann M, Emeis K, Suess E, et al. Water depth and diagenetic constraints on the use of barium as a palaeoproductivity indicator[J]. Geological Society, 1992, 64(1): 273-283.
    [59]
    张烈辉, 唐洪明, 陈果, 等. 川南下志留统龙马溪组页岩吸附特征及控制因素[J]. 天然气工业, 2014, 34(12): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412012.htm

    Zhang L H, Tang H M, Chen G, et al. Adsorption capacity and controlling factors of the Lower Silurian Longmaxi shale play in southern Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 63-69 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412012.htm
    [60]
    石学文, 周尚文, 田冲, 等. 川南地区海相深层页岩气吸附特征及控制因素[J]. 天然气地球科学, 2021, 32(11): 1735-1747. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202111014.htm

    Shi X W, Zhou S W, Tian C, et al. Methane adsorption characteristics and controlling factors of deep shale gas in southern Sichuan Basin, China[J]. Natural Gas Geoscience, 2021, 32(11): 1735-1747 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202111014.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(513) PDF Downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return