Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Jin Menggui, Zhang Jie, Zhang Zhixin, Cao Mingda, Huang Xin. A review on source identification of dissolved sulfate in groundwater: Advances, problems and development trends[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 160-171. doi: 10.19509/j.cnki.dzkq.2022.0161
Citation: Jin Menggui, Zhang Jie, Zhang Zhixin, Cao Mingda, Huang Xin. A review on source identification of dissolved sulfate in groundwater: Advances, problems and development trends[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 160-171. doi: 10.19509/j.cnki.dzkq.2022.0161

A review on source identification of dissolved sulfate in groundwater: Advances, problems and development trends

doi: 10.19509/j.cnki.dzkq.2022.0161
  • Received Date: 07 Dec 2021
    Available Online: 10 Nov 2022
  • Effective identification of the sources and biogeochemical processes of dissolved sulfate in groundwater is an important prerequisite for ensuring drinking water safety and aquatic ecological security and is of significance to manage and protect groundwater resources. In this review, the sources of groundwater sulfate and the typical range ofδ34S andδ18O isotope from different sulfate sources are summarized by reviewing the literature; the identification of sulfate sources and S biogeochemical cycles byδ34S andδ18O isotope in sulfate is reviewed, and the existing problems and development trends are proposed. The source apportionment of groundwater sulfate sources has gone through the processes of hydrochemistry analysis→δ34S isotope→dual isotope→qualitative identification of multiple isotopes and tracers→quantitative evaluation. Due to the differences in sulfur and oxygen isotopes and the biogeochemical transformation processes in a specific region, there is still a larger uncertainty in the determination of groundwater sulfate sources.It is proposed to arrange the sampling points for collecting pollution sources and groundwater samples on the framework of groundwater flow systems and land use distributions and to analyze the hydrochemical components and the sulfur and oxygen isotope values of sulfate and other complementary tracer isotope values and/or concentrations in a specific area. The sources and their contributions of groundwater sulfate are analyzed using multidisciplinary and multi-methods based on the full integration of hydrogeochemistry, seepage field, land use and other information in a study area for the scientific implementation of groundwater resource protection and pollution prevention.

     

  • loading
  • [1]
    Krouse H R, Grinenko V A. Stable isotopes: Natural and anthropogenic sulphur in the environment[M]. New York: John Wiley & Sons, 1991.
    [2]
    Zak D, Hupfer M, Cabezas A, et al. Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation[J]. Earth-Science Reviews, 2020, 212: 103446.
    [3]
    Wang H, Zhang Q. Research advances in identifying sulfate contamination sources of water environment by using stable isotopes[J]. International Journal of Environmental Research and Public Health, 2019, 16 (11): 1914. doi: 10.3390/ijerph16111914
    [4]
    Geurts J J M, Sarneel J M, Willers B J C, et al. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: A mesocosm experiment[J]. Environmental Pollution, 2009, 157: 2072-2081. doi: 10.1016/j.envpol.2009.02.024
    [5]
    Tostevin R, Turchyn A V, Farquhar J, et al. Multiple sulfur isotope constraints on the modern sulfur cycle[J]. Earth Planet Science Letters, 2014, 396: 14-21. doi: 10.1016/j.epsl.2014.03.057
    [6]
    Zhang Q Q, Wang H W, Lu C. Tracing sulfate origin and transformation in an area with multiple sources of pollution in northern China by using environmental isotopes and Bayesian isotope mixing model[J]. Environmental Pollution, 2020, 265: 115105. doi: 10.1016/j.envpol.2020.115105
    [7]
    Man K, Ma Z M, Xu X J. Research on the mechanism of sulfate pollution of groundwater in Jiaozuo area[J]. Applied Mechanics and Materials, 2014, 665: 436-439. doi: 10.4028/www.scientific.net/AMM.665.436
    [8]
    WHO (World Health Organization). Guidelines for drinking-water quality[M]. Fourth edition. Incorporating the First Addendum, 2017.
    [9]
    Kinnunen P, Kyllonen H, Kaartinen T, et al. Sulphate removal from mine water with chemical, biological and membrane technologies[J]. Water Science Technology, 2018, 2017: 194-205. doi: 10.2166/wst.2018.102
    [10]
    Zhang J, Jin M G, Cao M D, et al. Sources and behaviors of dissolved sulfate in the Jinan karst spring catchment in northern China identified by using environmental stable isotopes and a Bayesian isotope-mixing model[J]. Applied Geochemistry, 2021, 134: 105109. doi: 10.1016/j.apgeochem.2021.105109
    [11]
    马燕华, 苏春利, 刘伟江, 等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学, 2016, 37(12): 4690-4699. doi: 10.13227/j.hjkx.201604182

    Ma Y H, Su C L, Liu W J, et al. Identification of sulfate sources in the groundwater system of Zaozhuang: Evidences from isotopic and hydrochemical characteristics[J]. Environmental Science, 2016, 37(12): 4690-4699 (in Chinese with English abstract). doi: 10.13227/j.hjkx.201604182
    [12]
    Otero N, Soler A. Sulphur isotopes as tracers of the influence of potash mining in groundwater salinisation in the Llobregat Basin (NE Spain)[J]. Water Research, 2002, 36: 3989-4000. doi: 10.1016/S0043-1354(02)00125-2
    [13]
    Strebel O, Böttcher J, Fritz P. Use of isotope fractionation of sulfate-sulfur and sulfate- oxygen to assess bacterial desulfurication in a sandy aquifer[J]. Journal of Hydrology, 1990, 121: 155-172. doi: 10.1016/0022-1694(90)90230-U
    [14]
    Torres-Martínez J A, Mora A, Knappett P S K, et al. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model[J]. Water Research, 2020, 182: 115962. doi: 10.1016/j.watres.2020.115962
    [15]
    Vengosh A, Lindberg T T, Merola B R, et al. Isotopic imprints of mountaintop mining contaminants[J]. Environmental Science and Technology, 2013, 47(17): 10041-10048. doi: 10.1021/es4012959
    [16]
    Li X, Tang C Y, Cao Y J, et al. A multiple isotope (H, O, N, C and S) approach to elucidate the hydrochemical evolution of shallow groundwater in a rapidly urbanized area of the Pearl River Delta, China[J]. Science of the Total Environment, 2020, 724: 137930. doi: 10.1016/j.scitotenv.2020.137930
    [17]
    李瑞, 肖琼, 刘文, 等. 运用硫同位素、氮氧同位素示踪里湖地下河硫酸盐、硝酸盐来源[J]. 环境科学, 2015, 36(8): 2877-2886. doi: 10.13227/j.hjkx.2015.08.020

    Li R, Xiao Q, Liu W, et al. Using δ34S-SO42- and δ18O-SO42-, δ15N-NO3- to trace the source of sulfur and nitrate in Lihu Lake underground water, Guangxi, China[J]. Environmental Science, 2015, 36(8): 2877-2886 (in Chinese with English abstract). doi: 10.13227/j.hjkx.2015.08.020
    [18]
    Sun J, Takahashi Y, Strosnider W H J, et al. Tracing and quantifying contributions of end members to karst water at a coalfield in Southwest China[J]. Chemosphere, 2019, 234: 777-788. doi: 10.1016/j.chemosphere.2019.06.066
    [19]
    Cao X X, Wu P, Zhou S Q, et al. Tracing the origin and geochemical processes of dissolved sulphate in a karst-dominated wetland catchment using stable isotope indicators[J]. Journal of Hydrology, 2018, 562: 210-222. doi: 10.1016/j.jhydrol.2018.04.072
    [20]
    Herms I, Jódar J, Soler A, et al. Identification of natural and anthropogenic geochemical processes determining the groundwater quality in Port del Comte high mountain karst aquifer (SE, Pyrenees)[J]. Water, 2022, 13: 2891.
    [21]
    汪炎林, 周忠发, 田衷珲, 等. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析[J]. 环境化学, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105

    Wang Y L, Zhou Z F, Tian Z H, et al. Analysis of the spatial variation and sources of SO42- in karst water of Chiwu River[J]. Environmental Chemistry, 2017, 36(12): 2690-2700 (in Chinese with English abstract). doi: 10.7524/j.issn.0254-6108.2017030105
    [22]
    Blume H P, Brümmer G, Fleige H, et al. Scheffer/schachschabel soil science[M]. Berlin: Springer Verlag, 2016.
    [23]
    Shoda M E, Sprague L A, Murphy J C, et al. Water-quality trends in U.S. rivers, 2002 to 2012: Relations to levels of concern[J]. Science of the Total Environment, 2019, 650: 2314-2324. doi: 10.1016/j.scitotenv.2018.09.377
    [24]
    Zhang D, Li X D, Zhao Z Q, et al. Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China Plain[J]. Applied Geochemistry, 2015, 52: 43-56. doi: 10.1016/j.apgeochem.2014.11.011
    [25]
    Hosono T, Delinom R, Nakano T. Evolution model of δ34S and δ18O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area, Indonesia[J]. Science of the Total Environment, 2011, 409: 2541-2554. doi: 10.1016/j.scitotenv.2011.03.039
    [26]
    Torres-Martínez J A, Mora A, Mahlknecht J, et al. Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion: A multi-isotopic approach combined with self-organizing maps and a Bayesian mixing model[J]. Journal of Hazardous Materials, 2021, 417: 126103. doi: 10.1016/j.jhazmat.2021.126103
    [27]
    Hong Y T, Zhang H B, Zhu Y X. Sulfur isotopic characteristics of coal in China and sulfur isotopic fractionation during coal-burning process[J]. Chinese Journal of Geochemistry, 1993, 12: 51-59. doi: 10.1007/BF02869045
    [28]
    Palmer M A, Bernhardt E S, Schlesinger W H, et al. Mountaintop mining consequences[J]. Science, 2010, 327: 148-149. doi: 10.1126/science.1180543
    [29]
    Vitòria L, Otero N, Soler A, et al. Fertilizer characterization: Isotopic data (N, S, O, C, and Sr)[J]. Environmental Science and Technology, 2004, 38: 3254-3262. doi: 10.1021/es0348187
    [30]
    Strawn D G, Bohn H L, O'Connor G A. Soil chemistry[M]. 4th ed. New York: John Wiley & Sons, 2015: 381.
    [31]
    Puig R, Folch A, Mencio A, et al. Multi-isotopic study (15N, 34S, 18O, 13C) to identify processes affecting nitrate and sulfate in response to local and regional groundwater mixing in a large-scale flow system[J]. Applied Geochemistry, 2013, 32: 129-141. doi: 10.1016/j.apgeochem.2012.10.014
    [32]
    Jurado A, Vazquez-Sune E, Soler A, et al. Application of multi-isotope data (O, D, C and S) to quantify redox processes in urban groundwater[J]. Applied Geochemistry, 2013, 34: 114-125. doi: 10.1016/j.apgeochem.2013.02.018
    [33]
    Otero N, Soler A, Canals Á. Controls of δ34S and δ18O in dissolved sulphate: Learning from a detailed survey in the Llobregat River (Spain)[J]. Applied Geochemistry, 2008, 23: 1166-1185. doi: 10.1016/j.apgeochem.2007.11.009
    [34]
    Hosono T, Nakano T, Igeta A, et al. Impact of fertilizer on a small watershed of Lake Biwa: Use of sulfur and strontium isotopes in environmental diagnosis[J]. Science of the Total Environment, 2007, 384: 342-354. doi: 10.1016/j.scitotenv.2007.05.033
    [35]
    Li X D, Masuda H, Kusakabe M, et al. Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan Basin, China[J]. Geochemical Journal, 40, 2006: 309-332.
    [36]
    Tuttle M L W, Breit G N, Cozzarelli I M. Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA[J]. Chemical Geology, 2009, 265: 455-467. doi: 10.1016/j.chemgeo.2009.05.009
    [37]
    Mayer B. Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere[M]. Vienna: IAEA, 1998: 423-435.
    [38]
    韩珣, 任杰, 陈善莉, 等. 基于硫氧同位素研究南京北郊夏季大气中硫酸盐来源及氧化途径[J]. 环境科学, 2018, 39(5): 2010-2014. doi: 10.13227/j.hjkx.201709111

    Han X, Ren J, Chen S L, et al. Sulfur sources and oxidation pathways in summer aerosols from Nanjing northern suburbs using S and O isotopes[J]. Environmental Science, 2018, 39(5): 2010-2014 (in Chinese with English abstract). doi: 10.13227/j.hjkx.201709111
    [39]
    Li X Q, Bao H M, Gan Y Q, et al. Multiple oxygen and sulfur isotope compositions of secondary atmospheric sulfate in a mega-city in central China[J]. Atmospheric Environment, 2013, 81: 591-599. doi: 10.1016/j.atmosenv.2013.09.051
    [40]
    张彦鹏. 多元同位素对石家庄地区地下水地球化学环境演化的指示意义[D]. 武汉: 中国地质大学(武汉), 2015.

    Zhang Y P. Implications of multi-isotopes for groundwater geochemical environment evolution of groundwater in Shijiazhuang area[D]. Wuhan: China University of Geosciences(Wuhan), 2015 (in Chinese with English abstract).
    [41]
    Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9
    [42]
    Mizota C, Sasaki A. Sulfur isotope composition of soils and fertilizers: Differences between northern and southern hemispheres[J]. Geoderma, 1996, 71: 77-93. doi: 10.1016/0016-7061(95)00091-7
    [43]
    唐春雷, 梁永平, 王维泰, 等. 龙子祠泉域岩溶水水化学-同位素特征[J]. 桂林理工大学学报, 2017, 37(1): 53-58. doi: 10.3969/j.issn.1674-9057.2017.01.007

    Tang C L, Liang Y P, Wang W T, et al. Hydrogeochemical and isotopic characteristics of the karst groundwater systems in Longzici spring basin[J]. Journal of Guilin University of Technology, 2017, 37(1): 53-58 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2017.01.007
    [44]
    赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水SO42-δ34S特征及其环境意义[J]. 中国岩溶, 2019, 38(6): 867-875. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201906007.htm

    Zhao C H, Liang Y P, Lu H P, et al. Chemical characteristics and environmental significance of SO42- and sulfur isotope in the karst watershed of the Niangziguan spring, Shanxi Province[J]. Carsologica Sinica, 2019, 38(6): 867-875 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201906007.htm
    [45]
    黄奇波, 覃小群, 刘朋雨, 等. 汾阳地区不同类型地下水SO42-δ34S的特征及影响因素[J]. 第四纪研究, 2014, 34(2): 364-371. doi: 10.3969/j.issn.1001-7410.2014.02.10

    Huang Q B, Qin X Q, Liu P Y, et al. The characteristics and influencing factors of SO42- and sulfate isotope (δ34S) in different types of groundwater in Fenyang, Shanxi Province[J]. Quaternary Sciences, 34(2): 364-371 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2014.02.10
    [46]
    Li C C, Gao X B, Wang W Z, et al. Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system: A case study at Jinci, northern China[J]. Journal of Hydrology, 2020, 596: 125691.
    [47]
    殷秀兰, 王庆兵, 凤蔚. 济南岩溶泉域泉群区水化学与环境同位素研究[J]. 地质学报, 2017, 91(7): 1651-1660. doi: 10.3969/j.issn.0001-5717.2017.07.016

    Yin X L, Wang Q B, Feng W. Hydrochemical and isotopic study of the karst spring catchment in Jinan[J]. Acta Geologica Sinica, 2017, 91(7): 1651-1660 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.07.016
    [48]
    张七道, 肖长源, 李致伟, 等. 黔西北普宜地区富关键金属元素硫铁矿地质、地球化学和S同位素特征及其对成因的约束[J]. 地质科技通报, 2021, 40(6): 1-16. doi: 10.19509/j.cnki.dzkq.2021.0086

    Zhang Q D, Xiao C Y, Li Z W, et al. Geological, geochemical and sulfur isotope geochemistry of critical metals enriched pyritic ore in Puyi area, Northwest Guizhou Province: Constraints on genesis of the deposit[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 1-16 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0086
    [49]
    Marques J M, Graca H, Eggenkamp H G M, et al. Isotopic and hydrochemical data as indicators of recharge areas, flow paths and water-rock interaction in the Caldas da Rainha-Quinta das Janelas thermomineral carbonate rock aquifer (Central Portugal)[J]. Journal of Hydrology, 2013, 476: 302-313. doi: 10.1016/j.jhydrol.2012.10.047
    [50]
    Dowuona G N, Mermut A R, Krouse H R. Stable isotope geochemistry of sulfate in relation to hydrogeology in southern Saskatchewan, Canada[J]. Applied Geochemistry, 1993, 8: 255-263. doi: 10.1016/0883-2927(93)90040-N
    [51]
    任坤, 潘晓东, 兰干江, 等. 黔中茶店桥地下河流域不同水体硫酸盐浓度特征及来源识别[J]. 地质学报, 2016, 90(8): 1922-1932. doi: 10.3969/j.issn.0001-5717.2016.08.020

    Ren K, Pan X D, Lan G J, et al. Sulfate concentrations and source identification in different water bodies of the Chadianqiao underground river basin in Central Guizhou[J]. Acta Geologica Sinica, 2016, 90(8): 1922-1932 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.08.020
    [52]
    Spoelstra J, Leal K A, Senger N D, et al. Isotopic characterization of sulfate in a shallow aquifer impacted by agricultural fertilizer[J]. Groundwater, 2021, 59(5): 658-670. doi: 10.1111/gwat.13093
    [53]
    Samborska K, Halas S, Bottrell S H. Sources and impact of sulphate on groundwaters of Triassic carbonate aquifers, Upper Silesia, Poland[J]. Journal of Hydrology, 2013, 486: 136-150. doi: 10.1016/j.jhydrol.2013.01.017
    [54]
    张海林, 王重, 逄伟, 等. 硫氧同位素示踪污染物来源在济南岩溶水中的应用[J]. 中国地质调查, 2019, 6(1): 75- 80. doi: 10.19388/j.zgdzdc.2019.01.11

    Zhang H L, Wang Z, Pang W, et al. Using sulfur and oxygen isotope to trace the source of sulphate in Baotuquan spring area of Jinan[J]. Geological Survey of China, 2019, 6(1): 75- 80 (in Chinese with English abstract). doi: 10.19388/j.zgdzdc.2019.01.11
    [55]
    Einsiedl F, Mayer B. Sources and processes affecting sulfate in a karstic groundwater system of the Franconian Alb, southern Germany[J]. Environmental Science and Technology, 2005, 39: 7118-7125. doi: 10.1021/es050426j
    [56]
    Hosono T, Tokunaga T, Tsushima A, et al. Combined use of δ13C, δ15N, and δ34S tracers to study anaerobic bacterial processes in groundwater flow systems[J]. Water Research, 2014, 54: 284-296. doi: 10.1016/j.watres.2014.02.005
    [57]
    Li X Q, Zhou A G, Gan Y Q, et al. Controls on the 34S and 18O of dissolved sulfate in the quaternary aquifers of the North China Plain[J]. Journal of Hydrology, 2011, 400(3/4): 312-322.
    [58]
    Puig R, Soler A, Widory D, et al. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter Aquifer System (NE Spain) using a multi-isotope approach[J]. Science of the Total Environment, 2017, 580: 518-532. doi: 10.1016/j.scitotenv.2016.11.206
    [59]
    Hosono T, Siringan F, Yamanaka T, et al. Application of multi-isotope ratios to study the source and quality of urban groundwater in Metro Manila, Philippines[J]. Applied Geochemistry, 2010, 25: 900-909. doi: 10.1016/j.apgeochem.2010.03.009
    [60]
    Phillips D L. Mixing models in analyses of diet using multiple stable isotopes: A critique[J]. Oecologia, 2001, 127(2): 166-170. doi: 10.1007/s004420000571
    [61]
    Phillips D L, Gregg J W. Uncertainty in source partitioning using stable isotopes[J]. Oecologia, 2001, 127(2): 171-179. doi: 10.1007/s004420000578
    [62]
    Phillips D L, Koch P L. Incorporating concentration dependence in stable isotope mixing models[J]. Oecologia, 2002, 130: 114-125. doi: 10.1007/s004420100786
    [63]
    Koch P L, Phillips D L. Incorporating concentration dependence in stable isotope mixing models: A reply to Robbins, Hilderbrand and Farley (2002)[J]. Oecologia, 2002, 133(1): 14-18. doi: 10.1007/s00442-002-0977-6
    [64]
    Phillips D L, Gregg J W. Source partitioning using stable isotopes: Coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269. doi: 10.1007/s00442-003-1218-3
    [65]
    Moore J W, Semmens B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008, 11(5): 470-480. doi: 10.1111/j.1461-0248.2008.01163.x
    [66]
    Parnell A C, Inger R, Bearhop S, et al. Source partitioning using stable isotopes: Coping with too much variation[J]. PLoS ONE, 2010, 5(3): e9672. doi: 10.1371/journal.pone.0009672
    [67]
    Xue D M, Baets B D, Cleemput O V, et al. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water[J]. Environmental Pollution, 2012, 161: 43-49. doi: 10.1016/j.envpol.2011.09.033
    [68]
    Parnell A, Inger R. Stable isotope mixing models in R with simmr[DB/OL]. https://cran.r-project.org/web/packages/simmr/vignettes/simmr.html.2021-02-27/2021-06-10.
    [69]
    Parnell A C, Phillips D L, Bearhop S, et al. Bayesian stable isotope mixing models[J]. Environmetrics, 2013, 24 (6): 387-399.
    [70]
    Egbi C D, Anornua G K, Ganyaglo S Y, et al. Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: Sources and related human health risks[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110227. doi: 10.1016/j.ecoenv.2020.110227
    [71]
    Stock B C, Jackson A L, Ward E J, et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J]. PeerJ, 2018, 6: e5096. doi: 10.7717/peerj.5096
    [72]
    Ming X X, Groves C, Wu X Y, et al. Nitrate migration and transformations in groundwater quantified by dual nitrate isotopes and hydrochemistry in a Karst World Heritage site[J]. Science of the Total Environment, 2020, 735: 138907. doi: 10.1016/j.scitotenv.2020.138907
    [73]
    Zhang Y Z, Jiang Y J, Yuan D X, et al. Source and flux of anthropogenically enhanced dissolved inorganic carbon: A comparative study of urban and forest karst catchments in Southwest China[J]. Science of the Total Environment, 2020, 725: 138255. doi: 10.1016/j.scitotenv.2020.138255
    [74]
    邹霜, 张东, 李小倩, 等. 豫北山前平原深层地下水硫酸盐来源与污染途径的同位素示踪[J]. 地球科学, 2021, 90(8): 1922-1932. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202025.htm

    Zou S, Zhang D, Li X Q, et al. Sources and pollution pathways of deep groundwater sulfate underneath the piedmont plain in the North Henan Province[J]. Earth Science, 2021, 90(8): 1922-1932 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202025.htm
    [75]
    Taylor B E, Wheeler M C, Nordstrom D K. Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2669-2678. doi: 10.1016/0016-7037(84)90315-6
    [76]
    Toran L, Harris R F. Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation[J]. Geochimica et Cosmochimica Acta, 1989, 53: 2341-2348. doi: 10.1016/0016-7037(89)90356-6
    [77]
    Krouse H R, Mayer B. Environmental tracers in subsurface hydrology[M]. Boca Raton: Springer, 2000.
    [78]
    Van Stempvoort D R, Krouse H R. Controls of δ18O in sulphate[C]//Alpers C N, Blowes D W. Environmental geochemistry of sulphide oxidation[M]. Washington, D C: American Chemical Society, 1994.
    [79]
    Taylor B E, Wheeler M C. Sulfur- and oxygen-isotope geochemistry of acid mine drainage in the western United States: Field and experimental studies revisited[C]//Alpers N, Blowes D W. Environmental geochemistry of sulfide oxidation. Washington D C: American Chemical Society, 1994.
    [80]
    Balci N, Shanks Ⅲ W C, Mayer B, et al. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite[J]. Geochimica et Cosmochimica Acta, 2007, 71: 3796-811. doi: 10.1016/j.gca.2007.04.017
    [81]
    Otero N, Canals À, Soler A. Using dual-isotope data to trace the origin and processes of dissolved sulphate: A case study in Calders stream (Llobregat Basin, Spain)[J]. Aquat. Geochem., 2008, 13: 109-126.
    [82]
    Kroopnick P, Craig H. Atmospheric oxygen: Isotopic composition and solubility fractionation[J]. Science, 1972, 175: 54-55. doi: 10.1126/science.175.4017.54
    [83]
    Xu S, Li S L, Su J, et al. Oxidation of pyrite and reducing nitrogen fertilizer enhanced the carbon cycle by driving terrestrial chemical weathering[J]. Science of the Total Environment, 2021, 768: 144343. doi: 10.1016/j.scitotenv.2020.144343
    [84]
    Canfield D E. Biogeochemistry of sulfur isotopes[M]. Washington, D C: The Mineralogical Society of America, 2001.
    [85]
    Thamdrup B, Finster K, Hansen J W, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese[J]. Applied Environmental Microbiology, 1993, 59: 101-108. doi: 10.1128/aem.59.1.101-108.1993
    [86]
    Rees C E. A steady-state model for sulphur isotope fractionation in bacterial reduction processes[J]. Geochimica et Cosmochimica Acta, 1973, 37: 1141-1162. doi: 10.1016/0016-7037(73)90052-5
    [87]
    Strebel O, Böttcher J, Fritz P. Use of isotope fractionation of sulfate-sulfur and sulfate- oxygen to assess bacterial desulfurication in a sandy aquifer[J]. Journal of Hydrology, 1990, 121: 155-172. doi: 10.1016/0022-1694(90)90230-U
    [88]
    Wen J, Tang C Y, Cao Y J, et al. Understanding the inorganic carbon transport and carbon dioxide evasion in groundwater with multiple sulfate sources during different seasons using isotope records[J]. Science of the Total Environment, 2020, 710: 134480. doi: 10.1016/j.scitotenv.2019.134480
    [89]
    李小倩, 周爱国, 刘存富, 等. 河北平原地下水硫酸盐34S和18O同位素演化特征[J]. 地球学报, 2008, 29(6): 745-751. doi: 10.3321/j.issn:1006-3021.2008.06.014

    Li X Q, Zhou A G, Liu C F, et al. 34S and 18O isotopic evolution of residual sulfate in groundwater of the Hebei Plain[J]. Acta Geoscientica Sinica, 2008, 29(6): 745-751 (in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2008.06.014
    [90]
    Canfield D E. Isotope fractionation and sulfur metabolism by pure and enriched cultures of elemental sulfur disproportionating bacteria[J]. Limnology and Oceanography, 1998, 43: 253-264. doi: 10.4319/lo.1998.43.2.0253
    [91]
    Habicht K S, Canfield D E, Rethmeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J]. Geochimica et Cosmochimica Acta, 1998, 62: 2585-2595. doi: 10.1016/S0016-7037(98)00167-7
    [92]
    Kaplan I R, Rittenberg S C. Microbiological fractionation of sulphur isotopes[J]. Journal of General Microbiology, 1964, 34: 195-212. doi: 10.1099/00221287-34-2-195
    [93]
    Norman A L, Giesemann A H, Krouse H R, et al. Sulphur isotope fractionation during sulphur mineralization: Results of an incubation-extraction experiment with a Black Forest soil[J]. Soil Biology & Biochemistry, 2002, 34: 1425-1438.
    [94]
    Mayer B, Fritz P, Prietzel J, et al. The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils[J]. Applied Geochemistry, 1995, 10: 161-173. doi: 10.1016/0883-2927(94)00054-A
    [95]
    Van Stempvoort D R, Reardon E J, Fritz P. Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption[J]. Geochimica et Cosmochimica Acta, 1990, 54: 2817-2826. doi: 10.1016/0016-7037(90)90016-E
    [96]
    Aelion C M, Höhener P, Hunkeler D, et al. Environmental isotopes in biodegradation and bioremediation[M]. Boston, MA, USA: CRC Press, 2009.
    [97]
    Huang X, Jin M G, Ma B, et al. Identifying nitrate sources and transformation in groundwater in a large subtropical basin under a framework of groundwater flow systems[J]. Journal of Hydrology, 2022, 610: 127943. doi: 10.1016/j.jhydrol.2022.127943
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(436) PDF Downloads(147) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return