Citation: | Hu Xiaobing, Fang Jiancong, Zhai Huwei, Zhang Kai, Ma Yongming, Jin Jianhong, Gao Xubo. Application of sulfur and oxygen isotopes in identifying the source of sulfate in karst water from Xin′an spring area[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 333-340. doi: 10.19509/j.cnki.dzkq.2022.0166 |
An extremely high sulfate content is one of the main reasons for the deterioration of karst water quality in the Xin′an Spring area. Identifying the source of sulfate is of great significance for fully understanding the hydrogeochemical process in karst water and for the rational development, utilization and protection of karst water resources. In this work, the source of sulfate in karst water from the Xin′an Spring area is identified by sulfur and oxygen isotope. These results show that the sulfate in karst water mainly comes from gypsum dissolution, surface water leakage and pit water infiltration, and gypsum dissolution and mixing with surface water is the majority. This study provides important environmental and hydrogeological information for the protection, rational development and utilization of karst water resources in the study area.
[1] |
Gammons C H, Duaime T E, Parker S R, et al. Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA[J]. Chemical Geology, 2010, 269(1/2): 100-112. https://www.sciencedirect.com/science/article/pii/S0009254109002605
|
[2] |
Rock L, Mayer B. Identifying the influence of geology, land use, and anthropogenic activities on riverine sulfate on a watershed scale by combining hydrometric, chemical and isotopic approaches[J]. Chemical Geology, 2009, 262(3/4): 121-130. https://www.sciencedirect.com/science/article/pii/S0009254109000084
|
[3] |
臧红飞, 郑秀清, 张永波, 等. 柳林泉域岩溶水中SO42-的来源探讨[J]. 水文地质工程地质, 2017, 44(1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201701002.htm
Zang H F, Zheng X Q, Zhang Y G, et al. Source of SO42- in karst groundwater in the Liulin spring area[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 9-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201701002.htm
|
[4] |
Li C C, Gao X B, Wang W Z, et al. Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system: A case study at Jinci, northern China[J]. Journal of Hydrology, 2021, 596: 125691-125703. doi: 10.1016/j.jhydrol.2020.125691
|
[5] |
Liu C Q, Lang Y C, Satake H, et al. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: Combined δ37Cl and δ34S approach[J]. Environmental Science & Technology, 2008, 42(15): 5421-5427.
|
[6] |
Otero N, Canals A, Soler A. Using dual-isotope data to trace the origin and processes of dissolved sulphate: A case study in Calders stream (Llobregat basin, Spain)[J]. Aquatic Geochemistry, 2007, 13: 109-126. doi: 10.1007/s10498-007-9010-3
|
[7] |
张晓旭, 周爱国, 刘运德, 等. 鄂尔多斯盆地多级次地下水流系统中硝酸盐分布特征及其成因[J]. 地质科技通报, 2022, 41(1): 231-239. doi: 10.19509/j.cnki.dzkq.2022.0022
Zhang X X, Zhou A G, Liu Y D, et al. Distribution characteristics and genesis of nitrate in nested groundwater flow system in northern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 231-239(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0022
|
[8] |
Liang Y P, Gao X B, Zhao C, et al. Characterization, evolution, and environmental issues of karst water systems in Northern China[J]. Hydrogeology Journal, 2018, 26(5): 1371-1385. doi: 10.1007/s10040-018-1792-4
|
[9] |
张东, 黄兴宇, 李成杰. 硫和氧同位素示踪黄河及支流河水硫酸盐来源[J]. 水科学进展, 2013, 24(3): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303017.htm
Zhang D, Huang X Y, Li C J. Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes[J]. Advances in Water Science, 2013, 24(3): 418-426(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303017.htm
|
[10] |
张海林, 王重, 逄伟, 等. 硫氧同位素示踪污染物来源在济南岩溶水中的应用[J]. 中国地质调查, 2019, 6(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201901011.htm
Zhang H L, Wang Z, Pang W, et al. Using sulfur and oxygen isotope to trace the source of sulphate in Baotuquan spring area of Jinan[J]. Geological Survey of China, 2019, 6(1): 75-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201901011.htm
|
[11] |
任坤, 潘晓东, 兰干江, 等. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学, 2021, 42(9): 4267-4274. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202109020.htm
Ren K, Pan X D, Lan G J, et al. Seasonal variations and sources identification of dissolved sulfate in a typical karst subterranean stream basin using sulfur and oxygen isotopes[J]. Environmental Science, 2021, 42(9): 4267-4274(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202109020.htm
|
[12] |
王振东, 李有兴, 李天智, 等. 岩溶水系统评价: 山西辛安泉域水系统及水资源研究[M]. 北京: 中国水利水电出版社, 1996.
Wang Z D, Li Y X, Li T Z, et al. Evaluation of karst water system: Study on water system and water resources in Xin'an Spring Region of Shanxi Province[M]. Beijing: China Water & Power Press, 1996(in Chinese).
|
[13] |
陈荦, 张幼宽, 王长申. 基于时间序列分析的辛安泉流量变化研究[J]. 水文地质工程地质, 2012, 39(1): 19-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201201005.htm
Chen L, Zhang Y K, Wang C S. A study of evolution of the discharge of the Xin'an spring with time series analysis[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 19-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201201005.htm
|
[14] |
王焰新, 高旭波. 人类活动影响下娘子关岩溶水系统地球化学演化[J]. 中国岩溶, 2009, 28(2): 103-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200902007.htm
Wang Y X, Gao X B. Geochemical evolution of the Niangziguan karst water system under the impact of human activities[J]. Carsologica Sinica, 2009, 28(2): 103-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200902007.htm
|
[15] |
高旭波, 王万洲, 侯保俊, 等. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3): 287-298. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003001.htm
Gao X B, Wang W Z, Hou B J, et al. Analysis of karst groundwater pollution in northern China[J]. Carsologica Sinica, 2020, 39(3): 287-298(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003001.htm
|
[16] |
邱述兰. 利用多同位素(δ34S, δ34N, 87Sr/86Sr和δ13CDIC)方法示踪岩溶农业区地下水中硝酸盐和硫酸盐的污染: 以重庆市青木关地下河系统为例[D]. 重庆: 西南大学, 2012.
Qiu S L. Use of multiple environmental isotopes(δ34S, δ34N, 87Sr/86Sr and δ13CDIC) to trace sulfate and nitrate contaminations of karst groundwater in an agricultural area: A case from Qingmuguan subterranean stream system[D]. Chongqing: Southwest University, 2012(in Chinese with English abstract).
|
[17] |
王攀, 靳孟贵, 路东臣, 等. 永城市浅层地下水污染分布特征及来源识别[J]. 地质科技通报, 2022, 41(1): 260-268. doi: 10.19509/j.cnki.dzkq.2021.0136
Wang P, Jin M G, Lu D C, et al. Distribution characteristics and source identification of shallow groundwater pollution in Yongcheng City[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 260-268(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0136
|
[18] |
Jiang Y. Sources of sulfur in the Nandong underground river system, Southwest China: A chemical and isotopic reconnaissance[J]. Apply Geochemistry, 2012, 27: 1463-1470.
|
[19] |
张江华, 梁永平, 王维泰, 等. 硫同位素技术在北方岩溶水资源调查中的应用实例[J]. 中国岩溶, 2009, 28(3): 235-241.
Zhang J H, Liang Y P, Wang W T, et al. A practical use of 34S in the investigation of karst groundwater resource in North China[J]. Carsologica Sinica, 2009, 28(3): 235-241(in Chinese with English abstract).
|
[20] |
李义连, 王焰新, 刘剑, 等. 娘子关泉域岩溶地下水SO42-, Ca2+, Mg2+污染分析[J]. 地质科技情报, 1998, 17(2): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.020.htm
Li Y L, Wang Y X, Zhang J H, et al. Pollution analysis of SO42-, Ca2+, Mg2+in karstwater in Niangziguan spring area[J]. Geological Science and Technology Information, 1998, 17(2): 111-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.020.htm
|
[21] |
黄奇波, 覃小群, 刘朋雨, 等. 汾阳地区不同类型地下水SO42-、δ34S的特征及影响因素[J]. 第四纪研究, 2014, 34(2): 364-371. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201402010.htm
Huang Q B, Qin X Q, Liu P Y, et al. The characteristics and influencing factors of SO42-and sulfate isotope(δ34S) in different types of groundwater in Fenyang, Shanxi Province[J]. Quaternary Sciences, 2014, 34(2): 364-371(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201402010.htm
|
[22] |
顾慰祖, 林曾平, 费光灿, 等. 环境同位素硫在大同南寒武—奥陶系地下水资源研究中的应用[J]. 水科学进展, 2000, 11(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200001002.htm
Gu W Z, Lin Z P, Fei G C, et al. The use of environmental sulfur isotopes in the study of the Cambrian-Ordovician aquifer system in the south of Datong[J]. Advances in Water Science, 2000, 11(1): 14-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200001002.htm
|
[23] |
Turchyn A V, Tipper E T, Galy A, et al. Isotope evidence for secondary sulfide precipitation along the Marsyandi River, Nepal, Himalayas[J]. Earth and Planetary Science Letters, 2013, 374(4): 36-46. https://www.sciencedirect.com/science/article/pii/S0012821X13002215
|
[24] |
Zhang X, Li X, Gao X. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China[J]. Environmental Science and Pollution Research, 2016, 23(7): 6286-6299. doi: 10.1007/s11356-015-5838-z
|
[25] |
Jiang C F, Gao X B, Hou B J, et al. Occurrence and environmental impact of coal mine goaf water in karst areas in China[J]. Journal of Cleaner Production, 2020, 275: 123813-123816.
|
[26] |
Gao X B, Xu M, Hu Q H, et al. Leaching behavior of trace elements in coal spoils from Yangquan coal mine, northern China[J]. Journal of Earth Science, 2016, 27(5): 891-900. doi: 10.1007/s12583-016-0720-6
|
[27] |
张铭, 谭俊, 王怀洪, 等. 山东范家庄金矿床S、Pb同位素组成及对成矿物质来源的示踪[J]. 地质科技情报, 2019, 38(4): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904013.htm
Zhang M, Tan J, Wang H H, et al. Sulfur and lead isotopic compositions of the Fanjiazhuang gold deposit and their implications for sources of ore-forming materials, Shandong Province[J]. Geological Science and Technology Information, 2019, 38(4): 124-133(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904013.htm
|
[28] |
高旭波, 向绚丽, 侯保俊, 等. 水化学—稳定同位素技术在岩溶水文地质研究中的应用[J]. 中国岩溶, 2020, 39(5): 629-636. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005001.htm
Gao X B, Xiang X L, Hou B J, et al. Application of hydrochemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica, 2020, 39(5): 629-636(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005001.htm
|
[29] |
唐春雷, 赵春红, 申豪勇, 等. 娘子关泉群水化学特征及成因[J]. 环境科学, 2021, 42(3): 1416-1423. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202103044.htm
Tang C L, Zhao C H, Shen H Y, et al. Chemical characteristics and causes of groups water in Niangziguan spring[J]. Environmental Science, 2021, 42(3): 1416-1423(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202103044.htm
|
[30] |
段光武, 梁永平. 应用34S同位素分析阳泉市岩溶地下水硫酸盐污染[J]. 西部探矿工程, 2006, 18(1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200601044.htm
Duan G W, Liang Y P. The use of 34S in the analysis of sulfate contamination on karst groundwater in Yangquan[J]. West-China Exploration Engineering, 2006, 18(1): 100-103(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200601044.htm
|
[31] |
赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析[J]. 地质科技情报, 2018, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm
Zhao C H, Liang Y P, Lu H P, et al. Hydrogen and oxygen isotopic characteristics and influencing karst water in the Niangziguan spring area[J]. Geological Science and Technology Information, 2018, 37(5): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm
|
[32] |
Gao X B, Wang Y X, Wu P L, et al. Trace elements and environmental isotopes as tracers of surface water-groundwater interaction: A case study at Xin'an karst water system, Shanxi Province, Northern China[J]. Environmental Earth Sciences, 2010, 59(6): 1223-1234. doi: 10.1007/s12665-009-0111-8
|
[33] |
Gao X B, Wang Y X, Ma T, et al. Anthropogenic impact assessment of Niangziguan karst water[J]. Proceedings of the Institution of Civil Engineers-Water Management, 2011, 164(10/11): 495-510. doi: 10.1680/wama.1000070
|
[34] |
李向全, 张春潮, 侯新伟. 采煤驱动下晋东大型煤炭基地地下水循环演变特征: 以辛安泉域为例[J]. 煤炭学报, 2020, 46(9): 3015-3026. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202109028.htm
Li X Q, Zhang C C, Hou X W. Characteristics of groundwater circulation and evolution in Jindong large coal base driven by coal mining: An example of Xin'an spring area[J]. Journal of China Coal Society, 2020, 46(9): 3015-3026(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202109028.htm
|
[35] |
顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011.
Gu W Z. Isotope hydrology[M]. Beijing: Science Press, 2011(in Chinese).
|
[36] |
常反堂. 长治市水资源评价[M]. 北京: 中国科学技术出版社, 2006.
Chang F T. Evaluation of water resources in Changzhi City[M]. Beijign: Science and Technology of China Press, 2006(in Chinese).
|