Citation: | Wang Yunfei, Wei Jianguang. Reaction characteristics of low temperature oxidation of light crude oil with disoxidation air[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 207-213. doi: 10.19509/j.cnki.dzkq.2022.0181 |
With the temperature and pressure effect, the composition change and oxygen consumption law of light crude oil and discoxidation air in Tahei North Block were studied. The static oxidation experiment of crude oil was carried out in a high temperature and high pressure reactor indoors to systematically study the oxidation effect of crude oil by disoxidation air with different oxygen content and different gas injection volume; the hydrocarbon was analyzed by chromatographic analysis, and the reaction gas was collected for gas analysis. The results showed that: ① The low-temperature oxidation reaction between crude oil sample and disoxidation air decreased the components above C21 and increased the content of light components below C13; ② The oxidation effect of crude oil increased with the increase of oxygen content, and the components in the reaction process corresponded to the "inflection point" in the front; ③ When the oxygen content was constant, the "inflection point" corresponding to the reaction remained unchanged by changing the oil-gas ratio; In the overall reaction process, the oxygen content decreased and then tended to be flat; ④ CO2 was generated in the process of low-temperature oxidation, and the CO2 content tended to be flat after increasing; ⑤At reservoir temperature (160℃), crude oil mainly involves two reaction thermal cracking and oxygenation reactions. The thermal cracking reaction is not related to the oxygen content, but to the temperature. The main reaction temperature is 160-200℃. Heavy components such as high-carbon asphaltene will be decomposed into saturated hydrocarbons. The oxygenation reaction is mainly aromatic hydrocarbon, and the resin oxygenation reaction will also produce asphaltene. When the two reactions exist at the same time, the content of asphaltene participating in thermal cracking is greater than the quality of asphaltene generated by oxygenation reaction aromatic hydrocarbon, which will lead to the decrease of asphaltene content.
[1] |
赵永攀, 洪玲, 江绍静, 等. 水驱后特低渗透油藏氮气驱驱油特性分析[J]. 油田化学, 2013, 30(3): 376-379. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201303014.htm
Zhao Y P, Hong L, Jiang S J, et al. Analysis on oil displacement characteristics of nitrogen flooding in ultra-low permeability reservoir after water flooding[J]. Oilfield Chemistry, 2013, 30(3): 376-379(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201303014.htm
|
[2] |
魏浩光, 马坤, 岳湘安. 特低渗透油藏水驱后氮气驱油实验[J]. 大庆石油地质与开发, 2013, 32(2): 118-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201302023.htm
Wei H G, Ma K, Yue X A. Nitrogen flooding experiment after water flooding in ultra-low permeability reservoir[J]. Daqing Petroleum Geology and Development, 2013, 32(2): 118-121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201302023.htm
|
[3] |
蒋有伟, 张义堂, 刘尚奇, 等. 低渗透油藏注空气开发驱油机理[J]. 石油勘探与开发, 2010, 37(4): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004013.htm
Jiang Y W, Zhang Y T, Liu S Q, et al. Oil displacement mechanism of air injection development in low permeability reservoir[J]. Petroleum Exploration and Development, 2010, 37(4): 471-476(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004013.htm
|
[4] |
赵明国, 孙忠新. 气体性质对特低渗透油藏气驱效果的影响: 以大庆油田芳48断块为例[J]. 特种油气藏, 2007, 14(4): 75-77, 108-109. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200704023.htm
Zhao M G, Sun Z X. Influence of gas properties on gas drive effect of ultra-low permeability reservoir: Taking fault block Fang 48 in Daqing Oilfield as an example[J]. Special Oil and Gas Reservoir, 2007, 14(4): 75-77, 108-109(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200704023.htm
|
[5] |
谷潇雨, 蒲春生, 黄海, 等. 渗透率对致密砂岩储集层渗吸采油的微观影响机制[J]. 石油勘探与开发, 2017, 44(6): 948-954. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706013.htm
Gu X Y, Pu C S, Huang H, et al. Micro influence mechanism of permeability on imbibition oil production in tight sandstone reservoir[J]. Petroleum Exploration and Development, 2017, 44(6): 948-954(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706013.htm
|
[6] |
肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发, 2016, 43(6): 961-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm
Xiao D S, Lu S F, Lu Z Y, et al. Determination of pore throat structure of tight sandstone by nuclear magnetic resonance and constant velocity mercury injection[J]. Petroleum Exploration and Development, 2016, 43(6): 961-970(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm
|
[7] |
Kumar V K, Fassihi M R. Case history and appraisal of the medicine pole hills unit air injection project[J]. SPE Reservoir Engineering, 1997, 10(3): 198-202.
|
[8] |
郭平, 苑志旺, 廖广志. 注气驱油技术发展现状与启示[J]. 天然气工业, 2009, 29(8): 92-96, 143-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200908040.htm
Guo P, Yuan Z W, Liao G Z. Development status and enlightenment of gas injection flooding technology[J]. Natural Gas Industry, 2009, 29(8): 92-96, 143-144(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200908040.htm
|
[9] |
王敬, 姬泽敏, 刘慧卿, 等. 裂缝-孔洞型储集层注氮气辅助重力泄油实验[J]. 石油勘探与开发, 2019, 46(2): 342-353. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902018.htm
Wang J, Ji Z M, Liu H Q, et al. Experiment of nitrogen injection assisted gravity oil drainage in fractured vuggy reservoir[J]. Petroleum Exploration and Development, 2019, 46(2): 342-353(in Chinese with English abstract https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902018.htm
|
[10] |
胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46(4): 716-727. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904011.htm
Hu Y L, Hao M Q, Chen G L, et al. China CO2 oil displacement and buried technology and practice[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904011.htm
|
[11] |
廖广志, 王红庄, 王正茂, 等. 注空气全温度域原油氧化反应特征及开发方式[J]. 石油勘探与开发, 2020, 47(2): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002013.htm
Liao G Z, Wang H Z, Wang Z M, et al. Oxidation reaction characteristics and development mode of crude oil in full temperature range of air injection[J]. Petroleum Exploration and Development, 2020, 47(2): 334-340(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002013.htm
|
[12] |
Ren S R, Greaves M, Rathbone R R. Air injection LTO process: An IOR technique for light-oil reservoirs[J]. SPE Journal, 2002, 7(1): 90-99.
|
[13] |
王正茂, 廖广志, 蒲万芬, 等. 注空气开发中地层原油氧化反应特征[J]. 石油学报, 2018, 39(3): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803006.htm
Wang Z M, Liao G Z, Pu W F, et al. Characteristics of formation crude oil oxidation reaction in air injection development[J]. Journal of Petroleum, 2018, 39(3): 314-319(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803006.htm
|
[14] |
张世明. 低渗透油藏CO2驱气窜通道识别方法[J]. 油气地质与采收率, 2020, 27(1): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001016.htm
Zhang S M. Identification method of gas channeling channel in CO2 flooding in low permeability reservoir[J]. Oil and Gas Geology and Recovery, 2020, 27(1): 101-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001016.htm
|
[15] |
韦琦, 侯吉瑞, 郝宏达, 等. 特低渗油藏CO2驱气窜规律研究[J]. 石油科学通报, 2019, 4(2): 145-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201902004.htm
Wei Q, Hou J R, Hao H D, et al. Study on gas channeling law of CO2 flooding in ultra-low permeability reservoir[J]. Petroleum Science Bulletin, 2019, 4(2): 145-153(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201902004.htm
|
[16] |
张迎春, 杨莉, 顾文欢, 等. 深海挥发性油藏注气开发气油比变化规律研究及应用[J]. 中国海上油气, 2019, 31(5): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201905011.htm
Zhang Y C, Yang L, Gu W H, et al. Study and application of gas oil ratio change law in gas injection development of deep-sea volatile reservoir[J]. China Offshore Oil and Gas, 2019, 31(5): 107-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201905011.htm
|
[17] |
Lu X B, Wang Y, Tian F, et al. New insights into the carbonate karstic fault system and reservoir formation in the southern Tahe area of the Tarim Basin[J]. Marine and Petroleum Geology, 2017, 86: 587-605.
|
[18] |
Denney D. 30 Years of successful high-pressure air injection: Performance evaluation of Buffalo Field, South Dakota[J]. Journal of Petroleum Technology, 2011, 63(1): 50-53.
|
[19] |
Kumar V K, Gutierrez D, Moore R G, et al. Air injection and waterflood performance comparison of two adjacent units in the Buffalo Field[J]. SPE Reservoir Evaluation & Engineering, 2008, 11(5): 848-858.
|
[20] |
Fassihi M R, Yannimaras D V, Kumar V K. Estimation of recovery factor in light-oil air-injection projects[J]. SPE Reservoir Engineering, 1997, 12(4): 173-178.
|
[21] |
Guo W H, Mower J P. Evolution of plant mitochondrial intron-encoded maturases: Frequent lineage-specific loss and recurrent intracellular transfer to the nucleus[J]. Journal of Molecular Evolution, 2013, 77(1/2): 43-54.
|
[22] |
李继庆. "双高"阶段砂岩储层水驱剩余油富集模式模拟[J]. 地质科技情报, 2017, 36(3): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703019.htm
Li J Q. Simulation of water drive residual oil enrichment model of sandstone reservoir in "double high" stage[J]. Geological Science and Technology Information, 2017, 36(3): 137-143(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703019.htm
|
[23] |
李冰环. 气相色谱方法测定原油全烃碳数分布[J]. 复杂油气藏, 2020, 13(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202001002.htm
Li B H. Determination of total hydrocarbon carbon number distribution of crude oil by gas chromatography[J]. Complex Oil and Gas Reservoir, 2020, 13(1): 1-4(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202001002.htm
|
[24] |
王腾飞. 注空气采油低温氧化催化机理研究[D]. 山东青岛: 中国石油大学(华东), 2016.
Wang T F. Study on catalytic mechanism of low temperature oxidation in air injection oil recovery[D]. Qingdao Shandong: China University of Petroleum(East China), 2016(in Chinese with English abstract).
|
[25] |
于彪, 刘建良, 杨贵丽, 等. 渤海海域东部不同富油凹陷烃源岩生烃特征差异及意义[J]. 地质科技通报, 2021, 40(4): 104-114, 130. doi: 10.19509/j.cnki.dzkq.2021.0407
Yu B, Liu J L, Yang G L, et al. Differences and significance of hydrocarbon generation characteristics of source rocks in different oil-rich depressions in the eastern Bohai Sea[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 104-114, 130(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0407
|
[26] |
宋志峰, 张建光. 缝洞型碳酸盐岩靶向酸压目标体分类与建模[J]. 地质科技通报, 2021, 40(3): 78-84. doi: 10.19509/j.cnki.dzkq.2021.0303
Song Z F, Zhang J G. Classification and modeling of targeted acid fracturing targets in fractured vuggy carbonate rocks[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 78-84(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0303
|
[27] |
刘凯, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J]. 地质科技通报, 2021, 40(1): 57-68. doi: 10.19509/j.cnki.dzkq.2021.0102
Liu K, Shi W Z, Wang R, et al. Fractal characteristics of pore structure of tight sandstone in he 1 member in Hangjinqi area, Ordos Basin and its relationship with reservoir physical properties[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0102
|