Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Ning Hang, Wang Zongxing, Liu Futian, Jiang Wanjun, Chang Wei, Zhang Jing, Wan Junwei. Genesis of karst groundwater contamination based on system spatial feature recognition[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 367-376. doi: 10.19509/j.cnki.dzkq.2022.0187
Citation: Ning Hang, Wang Zongxing, Liu Futian, Jiang Wanjun, Chang Wei, Zhang Jing, Wan Junwei. Genesis of karst groundwater contamination based on system spatial feature recognition[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 367-376. doi: 10.19509/j.cnki.dzkq.2022.0187

Genesis of karst groundwater contamination based on system spatial feature recognition

doi: 10.19509/j.cnki.dzkq.2022.0187
  • Received Date: 06 Jul 2022
    Available Online: 10 Nov 2022
  • The karst groundwater system has a complex spatial structure, strong aquifer permeability and poor anti-pollution performance. Once pollution occurs, the pollutants spread rapidly, and the repair is difficult. This study takes the pollution of a large karst spring in South China as an example. On the basis of a karst hydrogeological survey, combined with hydrochemical characteristics and multiple-tracer technology, the boundary of karst groundwater system and the distribution of underground river pipelines were analyzed, and the main pollution sources and pollution routes of the karst spring were identified. In addition, the genetic model of karst groundwater pollution was also explored. These results showe that the Q1 karst groundwater system was a typical "multi-source, single-sink" groundwater circulation pattern with two main runoff channels in the north and south. Manganese, total bacterial counts, ammonia nitrogen and total phosphorus were the main substances exceeding the standard, which were 17, 14, 7.2 and 3.8 times the groundwater quality standard threshold, respectively. The construction waste blocked the original channel of the underground river, forcing the groundwater to divert and flow under the landfill. Engineering investigation and dynamic compaction activities destroyed the natural clay impermeable stratum under the landfill, resulting in the early transport of domestic garbage and leachate entered into the karst pipeline, both of which caused the pollution of karst groundwater. This study provides an important reference for the prevention and control of karst groundwater pollution.

     

  • loading
  • [1]
    Jürgen M, Abrahan M. Editorial overview: Management of groundwater resources and pollution prevention[J]. Current Opinion in Environmental Science & Health, 2022, 28: 100365.
    [2]
    Jiang W, Wang G, Sheng Y, et al. Isotopes in groundwater(2H, 18O, 14C) revealed the climate and groundwater recharge in the Northern China[J]. Science of the Total Environment, 2019, 666: 298-307. doi: 10.1016/j.scitotenv.2019.02.245
    [3]
    苗晋杰, 靳继红, 杜东, 等. 首都副中心及重点区域地下水环境质量评价与问题成因[J]. 地质调查与研究, 2020, 43(3): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202003004.htm

    Miao J J, Jin J H, Du D, et al. Valuation of groundwater environmental quality and causes of problems in the capital sub-center and key regions[J]. Geological Survey and Research, 2020, 43(3): 7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202003004.htm
    [4]
    Li P, He X, Li Y, et al. Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: A case study of Tongchuan, Northwest China[J]. Exposure & Health, 2019, 11(2): 95-107.
    [5]
    周晓妮, 王振兴, 苗青壮, 等. 漳河流域典型区浅层地下水水化学特征分析[J]. 地质调查与研究, 2020, 43(3): 265-270. doi: 10.3969/j.issn.1672-4135.2020.03.011

    Zhou X N, Wang Z X, Miao Q Z, et al. Study the shallow groundwater chemical characteristics in the typical area of Zhanghe catchment basin[J]. Geological Survey and Research, 2020, 43(3): 265-270(in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2020.03.011
    [6]
    Wang Z X, Wu R, Huang K, et al. Structure identification of a karst groundwater system based on high-resolution rainfall-hydrological response characteristics[J/OL]. Environmental Science and Pollution Research International, 2021. doi: 10.1007/511356-021-17880-x.
    [7]
    郭绪磊, 周宏, 罗明明, 等. 黄陵穹隆周缘岩溶水流系统特征及成因[J]. 地质科技通报, 2022, 41(1): 328-340. doi: 10.19509/j.cnki.dzkq.2022.0033

    Guo X L, Zhou H, Luo M M, et al. Characteristics and genesis of karst water flow system around Huangling anticline[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 328-340(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0033
    [8]
    Wang Z J, Guo X L, Kuang Y, et al. Recharge sources and hydrogeochemical evolution of groundwater in a heterogeneous karst water system in Hubei Province, Central China[J]. Applied Geochemistry, 2022, 136: 105165. doi: 10.1016/j.apgeochem.2021.105165
    [9]
    Nimmo J R, Horowitz C, Mitchell L. Discrete-storm water-table fluctuation method to estimate episodic recharge[J]. Ground Water, 2015, 53(2): 282-292. doi: 10.1111/gwat.12177
    [10]
    蒋忠诚, 夏日元, 时坚, 等. 西南岩溶地下水资源开发利用效应与潜力分析[J]. 地球学报, 2006, 27(5): 495-502. doi: 10.3321/j.issn:1006-3021.2006.05.012

    Jiang Z C, Xia R Y, Shi J, et al. The application effects and exploitation capacity of karst underground water resources in Southwest China[J]. Acta Geoscientica Sinica 2006, 27(5): 495-502(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2006.05.012
    [11]
    吴华英, 李腾芳, 程瑞瑞, 等. 我国岩溶地下水受污染的原因与污染特征[J]. 中国矿业, 2021, 30(增刊1): 4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2021S1023.htm

    Wu H Y, Li T F, Cheng R R, et al. Causes and characteristics of the pollution of karst groundwater in China[J]. China Mining Magazine, 2021, 30(S1): 4(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2021S1023.htm
    [12]
    卢丽, 王喆, 裴建国, 等. 西南地区典型岩溶地下水系统污染模式[J]. 南水北调与水利科技, 2018, 16(6): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201806014.htm

    Lu L, Wang Z, Pei J G, et al. Study on pollution model of typical karst groundwater system in area of southwest China[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(6): 89-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201806014.htm
    [13]
    高旭波, 王万洲, 侯保俊, 等. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3): 287-298. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003001.htm

    Gao X B, Wang W Z, Hou B J, et al. Analysis of karst groundwater pollution in northern China[J]. Carsologica Sinica, 2020, 39(3): 287-298(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003001.htm
    [14]
    谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. doi: 10.19509/j.cnki.dzkq.2020.0104

    Xie X J, Liu H X, Gao S, et al. Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0104
    [15]
    夏日元, 蒋忠诚, 邹胜章, 等. 岩溶地区水文地质环境地质综合调查工程进展[J]. 中国地质调查, 2017, 4(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201701001.htm

    Xia R Y, Jiang Z C, Zou S Z, et al. Progress of hydrogeology and environmental geology comprehensive survey in karst area[J]. Geological Survey of China, 2017, 4(1): 1-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201701001.htm
    [16]
    Wang Z J, Yue F J, Lu Ji, et al. New insight into the response and transport of nitrate in karst groundwater to rainfall events[J]. Science of the Total Environment, 2021: 818: 151727.
    [17]
    刘长礼, 王秀艳, 吕敦玉, 等. 中国南方岩溶地下水面源污染风险评价及防控对策[J]. 地球学报, 2017, 38(6): 910-918. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201706008.htm

    Liu C L, Wang X Y, Lü D Y, et al. Risk assessment and control countermeasures of southern China's karst groundwater areal source pollution[J]. Acta Geoscientica Sinica, 2017, 38(6): 910-918(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201706008.htm
    [18]
    Traian B, Mina B, Danny I, et al. Potential for natural attenuation of domestic and agricultural pollution in karst groundwater environments[J]. Water, 2022, 14(10): W14101597.
    [19]
    孙斌, 邢立亭, 李常锁. 趵突泉泉域岩溶水典型污染组分变化特征及污染途径[J]. 中国岩溶, 2018, 37(6): 810-818. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201806002.htm

    Sun B, Xing L T, Li C S. Variation of typical pollution components and pollution way of karst water in Baotu Spring region[J]. Carsologica Sinica, 2018, 37(6): 810-818(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201806002.htm
    [20]
    何愿, 张颖, 朱明. 桂江流域地下水污染途径及防控措施研究[J]. 中国岩溶, 2015, 34(4): 387-394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201504012.htm

    He Y, Zhang Y, Zhu M. The pollutant infiltration pathways and measures to control groundwater pollution in the Guijiang River drainage system[J]. Carsologica Sinica, 2015, 34(4): 387-394(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201504012.htm
    [21]
    段俭君, 李卿. 南方煤矿区喀斯特泉污染源识别及污染通道探查方法[J]. 能源与环保, 2019, 41(11): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT201911016.htm

    Duan J J, Li Q. Identification of karst spring pollution sources and exploration method of pollution channels in southern coal mine area[J]. China Energy and Environmental Protection, 2019, 41(11): 62-66(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT201911016.htm
    [22]
    孟舒然, 吕敦玉, 张建羽, 等. 基于地统计技术的地下水硝酸盐的污染源解析研究[J]. 环境科学与技术, 2021, 44(增刊2): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2021S2024.htm

    Meng S R, Lü D Y, Zhang J Y. Sources apportionment of groundwater nitrate using statistical technology[J]. Environmental Science & Technology, 2021, 44(S2): 197-204(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2021S2024.htm
    [23]
    常威, 谭家华, 黄琨, 等. 地下水多元示踪试验在岩溶隧道水害预测中的应用: 以张吉怀高铁兰花隧道为例[J]. 中国岩溶, 2020, 39(3): 400-408. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm

    Chang W, Tan J H, Huang K, et al. Application of groundwater multi-element tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua tunnel on the Zhangjiajie-Jishou-7Huaihua high-speed railway[J]. Carsologica Sinica, 2020, 39(3): 400-408(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm
    [24]
    程烯, 万军伟, 黄琨, 等. 荧光示踪剂的干扰实验研究[J]. 中国岩溶, 2019, 38(5): 795-803. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201905019.htm

    Cheng X, Wan J W, Huang K, et al. Experimental study on the interference of fluorescent tracer[J]. Carsologica Sinica, 2019, 38(5): 795-803(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201905019.htm
    [25]
    常威. 复杂岩溶水系统识别及其在隧道涌水量预测的应用[D]. 武汉: 中国地质大学(武汉), 2021.

    Chang W. Study on the identification of complex karst water system and its application in tunnel water disaster prediction: A case study of Zhangjiajie-Jishou-Huaihua high-speed railway Daqing mountain tunnel[D]. Wuhan: China University of Geosciences(Wuhan), 2021(in Chinese with English abstract).
    [26]
    Panno S V, Kelly W R, Martinsek A T, et al. Estimating background and threshold nitrate concentrations using probability graphs[J]. Ground Water, 2010, 44(5): 697-709.
    [27]
    Pastén-Zapata E, Ledesma-Ruiz R, Harter T, et al. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach: Science direct[J]. Science of the Total Environment, 2014, 470/471(2): 855-864.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(399) PDF Downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return