Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Chang Yong, Qi Yaoyong, Liu Ling. Modelling the hydrological process of the karst spring using a revised Vensim model[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 301-307. doi: 10.19509/j.cnki.dzkq.2022.0188
Citation: Chang Yong, Qi Yaoyong, Liu Ling. Modelling the hydrological process of the karst spring using a revised Vensim model[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 301-307. doi: 10.19509/j.cnki.dzkq.2022.0188

Modelling the hydrological process of the karst spring using a revised Vensim model

doi: 10.19509/j.cnki.dzkq.2022.0188
  • Received Date: 06 Jul 2022
    Available Online: 10 Nov 2022
  • The conventional Vensim model uses two parallel reservoirs to simulate the slow and fast flows in karst systems, which can hardly simulate the existing nonlinear hydrological process. This paper proposed a revised Vensim model (R-Vensim) to further enhance its ability to simulate the nonlinear hydrological process in karst systems. This revised version changed one linear reservoir in the Vensim model into a nonlinear reservoir and considered the variation in the distribution coefficient under different hydrological conditions. The two models were applied to simulate the discharge of karst spring S31 located at the Yaji experimental site. The simulation results indicated that the R-Vensim model can reasonably reproduce the discharge dynamics under different precipitation conditions, whereas the Vensim model underestimated the fast flow peaks and overestimated the slow flow peaks. In the study catchment, the fast flow was almost linear, whereas the slow flow was highly nonlinear. In the calibration period, 78.5% of spring discharge came from the nonlinear reservoir. The results showed that, considering the nonlinear hydrological process was a key issue to accurately simulate the karst spring, particularly for the slow flow condition.

     

  • loading
  • [1]
    单海平, 邓军. 我国西南地区岩溶水资源的基本特征及其和谐利用对策[J]. 中国岩溶, 2006, 25(4): 324-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200604011.htm

    Shan H P, Deng J. Basic features and counter-measures for use of karst water in Southwest China[J]. Carsologica Sinica, 2006, 25(4): 324-329(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200604011.htm
    [2]
    常勇, 刘玲. 岩溶地区水文模型综述[J]. 工程勘察, 2015, 43(3): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201503007.htm

    Chang Y, Liu L. Review of karst hydrological models[J]. Geotechnical Investigation & Surveying, 2015, 43(3): 37-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201503007.htm
    [3]
    吴乔枫, 刘曙光, 蔡奕, 等. 流域非闭合特性对岩溶地区水文过程模拟的影响[J]. 水利学报, 2017, 48(4): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201704009.htm

    Wu Q F, Liu S G, Cai Y, et al. Effect of unclosed characteristics of the basin on hydrological modeling in karst regions[J]. Journal of Hydraulic Engineering, 2017, 48(4): 457-466(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201704009.htm
    [4]
    Chang Y, Wu J, Jiang G, et al. Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model[J]. Journal of Hydrology, 2017, 548: 75-87. doi: 10.1016/j.jhydrol.2017.02.050
    [5]
    Duran L, Massei N, Lecoq N, et al. Analyzing multi-scale hydrodynamic processes in karst with a coupled conceptual modeling and signal decomposition approach[J]. Journal of Hydrology, 2020, 583: 124625. doi: 10.1016/j.jhydrol.2020.124625
    [6]
    Fleury P, Plagnes V, Bakalowicz M. Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse(South of France)[J]. Journal of Hydrology, 2007, 345(1): 38-49. https://www.sciencedirect.com/science/article/pii/S0022169407004295
    [7]
    Goldscheider N, Drew D. Methods in karst hydrogeology[C]//International Contributions to Hydrogeology, 26. London: Crc Press, 2007.
    [8]
    Fleury P. Sources sous-marines et aquiferes karstiques cǒtiers mediterraneens. fonctionnement et caracterisation[D]. Paris: Université Pierre Et Marie Curie-Paris Vi, 2005.
    [9]
    Charlier J B, Bertrand C, Mudry J. Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system[J]. Journal of Hydrology, 2012, 460/461: 52-64. doi: 10.1016/j.jhydrol.2012.06.043
    [10]
    Hartmann A, Lange J, Aguado A V, et al. A multi-model approach for improved simulations of future water availability at a large eastern Mediterranean karst spring[J]. Journal of Hydrology, 2012, 468/469: 130-138. doi: 10.1016/j.jhydrol.2012.08.024
    [11]
    Zhang Z C, Chen X, Cheng Q B, et al. Storage dynamics, hydrological connectivity and flux ages in a karst catchment: Conceptual modelling using stable isotopes[J]. Hydrology and Earth System Sciences, 2019, 23(1): 51-71. doi: 10.5194/hess-23-51-2019
    [12]
    Tritz S, Guinot V, Jourde H. Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model[J]. Journal of Hydrology, 2011, 397(3): 250-262. https://www.sciencedirect.com/science/article/pii/S0022169410007432
    [13]
    Alparslan A. MODALP: A deterministic rainfall-runoff model for large karstic areas[J]. International Association of Scientific Hydrology Bulletin, 1988, 33(4): 401-414.
    [14]
    Bonacci O. Ground water behaviour in karst: Example of the Ombla Spring(Croatia)[J]. Journal of Hydrology, 1995, 165(1): 113-134. https://www.sciencedirect.com/science/article/pii/002216949402577X
    [15]
    Rozos E, Koutsoyiannis D. A multicell karstic aquifer model with alternative flow equations[J]. Journal of Hydrology, 2006, 325(1): 340-355. https://www.sciencedirect.com/science/article/pii/S0022169405005512
    [16]
    刘再华, Chris G, 袁道先, 等. 水-岩-气相互作用引起的水化学动态变化研究: 以桂林岩溶试验场为例[J]. 水文地质工程地质, 2003, 30(4): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200304003.htm

    Liu Z H, Chris G, Yuan D X, et al. Study on the hydrochemical variations caused by the water-rock-gas interaction: An example from the Guilin Karst Experimental Site[J]. Hydrogeology & Engineering Geology, 2003, 30(4): 13-18(Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200304003.htm
    [17]
    Halihan T, Wicks C M, Engeln J F. Physical response of a karst drainage basin to flood pulses: Example of the Devil's Icebox cave system(Missouri, USA)[J]. Journal of Hydrology, 1998, 204(1): 24-36. https://www.sciencedirect.com/science/article/pii/S0022169497001042
    [18]
    Chang Y, Wu J C, Jiang G H. Modeling the hydrological behavior of a karst spring using a nonlinear reservoir-pipe model[J]. Hydrogeology Journal, 2015, 23(5): 1-14. doi: 10.1007/s10040-015-1241-6
    [19]
    Eagleman J R. Pan evaporation, potential and actual evapotranspiration[J]. Journal of Applied Meteorology, 1967, 6(3): 482-488.
    [20]
    Duan Q Y, Sorooshian S, Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resources Research, 1992, 28(4): 1015-1031. doi: 10.1029/91WR02985
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(332) PDF Downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return