Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Tian Jianfeng, Yu Jian, Zhang Zhiguo. Advance in alkaline dissolution of sandstone[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 83-93. doi: 10.19509/j.cnki.dzkq.2022.0195
Citation: Tian Jianfeng, Yu Jian, Zhang Zhiguo. Advance in alkaline dissolution of sandstone[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 83-93. doi: 10.19509/j.cnki.dzkq.2022.0195

Advance in alkaline dissolution of sandstone

doi: 10.19509/j.cnki.dzkq.2022.0195
  • Received Date: 08 Mar 2022
    Available Online: 10 Nov 2022
  • Alkaline authigenic minerals such as chlorite, laumontite, albite, and illite formed by alkaline dissolution of volcanic materials and feldspar are the focus of sandstone reservoir research, but alkaline dissolution itself is often ignored. Through analysis of the alkaline dissolution mechanism, controlling factors and diagenetic characteristics, it is found that alkaline dissolution includes five types: alkaline dissolution of quartz grains, hydrolysis and dissolution of volcanic materials, K-feldspar dissolution caused by illitization of montmorillonite, K-feldspar dissolution caused by illitization of kaolinite, and albitization of plagioclase. As alkaline dissolution is often superimposed with acid dissolution, it is difficult to directly determine the type and scale of alkaline dissolution and is often ignored or misjudged as acid dissolution. Based on the genetic relationship between alkaline dissolution and its associated cements, the type and scale of alkaline dissolution of some sandstone reservoirs are analyzed. Alkaline dissolution is very common in the petroliferous basin of China, and the secondary pores formed by the first four kinds of alkaline dissolution can reach 2%-7%, 5%-10%, 1.32% and 1.63%, respectively.

     

  • loading
  • [1]
    Schmidt V, McDonald D A. Role of secondary porosity in sandstone diagenesis[J]. AAPG Bulletin, 1977, 61(8): 1390-1391.
    [2]
    Pye K, Krinsley D H. Formation of secondary porosity in sandstones by quartz framework grain dissolution[J]. Nature, 1985, 317: 54-56. doi: 10.1038/317054a0
    [3]
    陈忠, 罗蛰潭, 沈明道, 等. 由储层矿物在碱性驱替剂中的化学行为到砂岩储层次生孔隙的形成[J]. 西南石油大学学报: 自然科学版, 1996, 18(2): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY602.002.htm

    Chen Z, Luo Z T, Shen M D, et al. Study of secondary pore formation on the basis of chemical behaviour of minerals in alkaline-flooding agents[J]. Journal of Southwest China Petroleum Institute, 1996, 18(2): 15-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY602.002.htm
    [4]
    邱隆伟, 姜在兴. 陆源碎屑岩的碱性成岩作用[M]. 北京: 地质出版社. 2006.

    Qiu L W, Jiang Z X. Alkaline diagenesis of terrigenous clastic rocks[M]. Beijing: Geological Publishing House, 2006 (in Chinese).
    [5]
    钟大康, 朱筱敏, 周新源, 等. 初论塔里木盆地砂岩储层中SiO2的溶蚀类型及其机理[J]. 地质科学, 2007, 42(2): 403-414.

    Zhong D K, Zhu X M, Zhou X Y, et al. An approach to categories and mechanisms of SiO2 dissolution in sandstone reservoirs in the Tarim Basin[J]. Scientia Geologica Sinica, 42(2): 403-414(in Chinese with English abstract).
    [6]
    张胜斌, 刘震, 刘红俊, 等. 四川盆地河包场须家河组碱性成岩作用[J]. 新疆石油地质, 2011, 32(5): 464-468. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201105007.htm

    Zhang S B, Liu Z, Liu H J, et al. Alkali diagenesis of Xujiahe sandstone in Hebaochang Block in Sichuan Basin[J]. Xinjiang Petroleum Geology, 2011, 32(5): 464-468(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201105007.htm
    [7]
    郭欣欣, 刘立, 曲希玉, 等. 碱性地层水对火山碎屑岩改造作用的实验研究[J]. 石油实验地质, 2013, 35(3): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201303017.htm

    Guo X X, Li L, Qu X Y, et al. Experimental study on reformation of volcanic clastic rocks by alkaline formation water[J]. Petroleum Geology & Experiment, 2013, 35(3): 314-319(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201303017.htm
    [8]
    刘金库, 彭军, 石岩, 等. 致密砂岩储层石英溶蚀成因及对孔隙发育的影响: 以川中-川南过渡带须家河组为例[J]. 石油学报, 2015, 36(9): 1090-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509006.htm

    Liu J K, Peng J, Shi Y, et al. The genesis of quartz dissolution in tight sand reservoirs and its impact on pore development: A case study of Xujiahe Formation in the transitional zone of central-southern Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 102(1): 40-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509006.htm
    [9]
    祝海华, 钟大康, 姚泾利, 等. 碱性环境成岩作用及对储集层孔隙的影响: 以鄂尔多斯盆地长7段致密砂岩为例[J]. 石油勘探与开发, 2015, 42(1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501007.htm

    Zhu H H, Zhong D K, Yao J L, et al. Alkaline diagenesis and its effects on reservoir porosity: A case study of Upper Triassic Chang 7 Member tight sandstone in Ordos Basin, NW China[J]. Petroleum Exploration & Development, 2015, 42(1): 56-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501007.htm
    [10]
    单祥, 郭华军, 邹志文, 等. 碱性环境成岩作用及其对储集层质量的影响: 以准噶尔盆地西北缘中-下二叠统碎屑岩储集层为例[J]. 新疆石油地质, 2018, 39(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201801013.htm

    Shan X, Guo H J, Zou Z W, et al. Diagenesis in alkaline environment and its influences on reservoir quality: A case study of Middle-Lower Permian clastic reservoirs in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1): 55-62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201801013.htm
    [11]
    王剑, 周路, 刘金, 等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组酸碱交替成岩作用特征及对页岩储集层的影响[J]. 石油勘探与开发, 2020, 47(5): 898-912. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005007.htm

    Wang J, Zhou L, Liu J, et al. Acid-base alternation diagenesis and its influence on shale reservoirs in the Permian Lucaogou Formation, Jimusar Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 898-912(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005007.htm
    [12]
    宇振昆, 丁金岗, 冯振伟, 等. 准噶尔盆地玛湖凹陷二叠系风城组碱性成岩作用浅析[J]. 非常规油气, 2021, 8(2): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202102005.htm

    Yu Z K, Ding J G, Feng Z W, et al. Analysis on alkaline diagenesis of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Unconventional Oil & Gas, 2021, 8(2): 24-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202102005.htm
    [13]
    Zhu S F, Zhu X X, Liu X, et al. Authigenic minerals and diagenetic evolution in altered volcanic materials and their impacts on hydrocarbon reservoirs: Evidence from the Lower Permian in the northwestern margin of Junggar Basin, China[J]. Arabian Journal of Geosciences, 2016, 9(2): 1-19.
    [14]
    Chen J, Yao J, Mao Z, et al. Sedimentary and diagenetic controls on reservoir quality of low-porosity and low-permeability sandstone reservoirs in Chang 101, Upper Triassic Yanchang Formation in the Shanbei area, Ordos Basin, China[J]. Marine and Petroleum Geology, 2019: 204-221.
    [15]
    袁珍, 郑艳忠, 袁海莉, 等. 鄂尔多斯盆地东南缘延长组浊沸石胶结物特征及其成岩模式[J]. 西北大学学报: 自然科学版, 2020, 50(1): 124-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202001016.htm

    Yuan Z, Zheng Y Z, Yuan H L, et al. Study on the characteristics and diagenesis model of laumontite cement in Yanchang Formation in the southeastern margin of Ordos Basin[J]. Journal of Northwest University: Natural Science Edition, 2020, 50(1): 124-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202001016.htm
    [16]
    Aagaard P, Jahren J S, Harstad A O, et al. Formation of grain-coating chlorite in sandstones: Laboratory synthesized vs. natural occurrences[J]. Clay Minerals, 2000, 35(1): 261-270. doi: 10.1180/000985500546639
    [17]
    田建锋, 刘池洋, 王桂成, 等. 鄂尔多斯盆地三叠系延长组砂岩的碱性溶蚀作用[J]. 地球科学: 中国地质大学学报, 2011, 36(1): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101012.htm

    Tian J F, Liu C Y, Wang G C, et al. Alkaline dissolution of sandstone in the Triassic Yanchang Formation in the Ordos Basin[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(1): 103-110(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101012.htm
    [18]
    Yanagimoto Y, Iijima A. Laumontization and secondary pore of sandstones in the Paleogene and Upper Cretaceous coal measures, off Northeast Honshu, Japan[J]. Resource Geology, 2004, 54(4): 465-476. doi: 10.1111/j.1751-3928.2004.tb00222.x
    [19]
    杨晓萍, 张宝民, 陶士振. 四川盆地侏罗系沙溪庙组浊沸石特征及油气勘探意义[J]. 石油勘探与开发, 2005, 32(3): 37-40. doi: 10.3321/j.issn:1000-0747.2005.03.007

    Yang X P, Zhang B M, Tao S Z. Laumonite and its significance for petroleum exploration in Jurassic Shaximiao reservoir, Sichuan Basin[J]. Petroleum Exploration and Development, 2005, 32(3): 37-40(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2005.03.007
    [20]
    黄思静, 谢连文, 张萌, 等. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J]. 成都理工大学学报: 自然科学版, 2004, 31(3): 273-281. doi: 10.3969/j.issn.1671-9727.2004.03.009

    Huang S J, Xie L W, Zhang M, et al. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2004, 31(3): 273-281(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2004.03.009
    [21]
    Dowey P J, Hodgson D M, Worden R H. Pre-requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs: A review of subsurface examples[J]. Marine and Petroleum Geology, 2012, 32(1): 0-75.
    [22]
    Iijima A. Zeolites in petroleum and natural gas reservoirs[J]. Reviews in Mineralogy and Geochemistry, 2001, 45(1): 347-402.
    [23]
    田建锋, 喻建, 张庆洲. 孔隙衬里绿泥石的成因及对储层性能的影响[J]. 吉林大学学报: 地球科学版, 2014, 44(3): 741-748. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201403003.htm

    Tian J F, Yu J, Zhang Q Z. The pore-lining chlorite formation mechanism and its contribution to reservoir quality[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(3): 741-748(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201403003.htm
    [24]
    Wang Y Z, Lin M R, Xi K L, et al. Characteristics and origin of the major authigenic minerals and their impacts on reservoir quality in the Permian Wutonggou Formation of Fukang Sag, Junggar Basin, western China[J]. Marine and Petroleum Geology, 2018, 97: 241-259.
    [25]
    Dove P M. The dissolution kinetics of quartz in sodium chloride solutions at 25℃ to 300℃[J]. Am. J. Sci., 1994, 294(6): 665-712. doi: 10.2475/ajs.294.6.665
    [26]
    Bennett P C. Quartz dissolution in organic-rich aqueous systems[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1781-1797. doi: 10.1016/0016-7037(91)90023-X
    [27]
    陈修, 曲希玉, 邱隆伟, 等. 石英溶解特征及机理的水热实验研究[J]. 矿物岩石地球化学通报, 2015, 34(5): 1027-1033. doi: 10.3969/j.issn.1007-2802.2015.05.019

    Chen X, Qu X Y, Qiu L W, et al. Hydrothermal experiment research on characteristics and mechanisms of quartz dissolution[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2015, 34(5): 1027-1033(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2015.05.019
    [28]
    Ali A M, Padmanabhan E, Baioumy H. Characterization of alkali-induced quartz dissolution rates and morphologies[J]. Arabian Journal for Science & Engineering, 2017, 42(6): 1-13.
    [29]
    张思亭, 刘耘. 不同pH值条件下石英溶解的分子机理[J]. 地球化学, 2009, 38(6): 549-557. doi: 10.3321/j.issn:0379-1726.2009.06.004

    Zhang S T, Liu Y. The molecular level dissolution mechanisms of quartz under different pH conditions[J]. Geochimica, 2009, 38(6): 549-557(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.06.004
    [30]
    Yanina S V, Rosso K M, Meakin P. Defect distribution and dissolution morphologies on low-index surfaces of α-quartz[J]. Geochimica et Cosmochimica Acta, 2006, 70(5): 1113-1127. doi: 10.1016/j.gca.2005.11.019
    [31]
    邱隆伟, 姜在兴, 操应长, 等. 泌阳凹陷碱性成岩作用及其对储层的影响[J]. 中国科学: 地球科学, 2001, 31(9): 752-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200109006.htm

    Qiu L W, Jiang Z X, Cao Y C, et al. Alkaline diagenesis and its influence on a reservoir in the Biyang Depression[J]. Science China: Earth Scieneces, 2001, 31(9): 752-759(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200109006.htm
    [32]
    曹天宇, 钟大康, 牛胜利, 等. 惠州凹陷东部珠海组储层碱性成岩作用及孔隙演化[J]. 沉积学报, 2020, 38(6): 1327-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202006017.htm

    Cao T Y, Zhong D K, Niu S L, et al. Alkaline diagenesis and porosity evolution of Zhuhai Formation reservoirs in eastern Huizhou Sag[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1327-1337(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202006017.htm
    [33]
    曲希玉, 陈修, 邱隆伟, 等. 石英溶解型次生孔隙的成因及其对储层的影响: 以大牛地气田上古生界致密砂岩储层为例[J]. 石油与天然气地质, 2015, 36(5): 804-813. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201505014.htm

    Qu X Y, Chen X, Qiu L W, et al. Genesis of secondary pore of quartz dissolution type and its influences on reservoir: Taking the tight sandstone reservoir in the Upper Paleozoic of Daniudi gas field as an example[J]. Oil & Gas Geology, 2015, 36(5): 804-813(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201505014.htm
    [34]
    Ajdukiewicz J M. Larese R E. How clay grain coats inhibit quartz cement and preserve deep sandstone porosity: Some experimental observations[J]. AAPG, 2012, 96(11): 2091-2119.
    [35]
    杜学斌, 陆永潮, 曹强, 等. 东海盆地西湖凹陷深部储层"相-岩-温"三元分级评价原则与效果[J]. 地质科技通报, 2020, 39(3): 10-19. doi: 10.19509/j.cnki.dzkq.2020.0302

    Du X B, Lu Y C, Cao Q, et al. Grading evaluation of deep reservoir in Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 10-19(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0302
    [36]
    田夏荷, 屈红军, 刘新社, 等. 鄂尔多斯盆地东部上古生界致密气储层石英溶蚀及其机理探讨[J]. 天然气地球科学, 2016, 27(11): 2005-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201611008.htm

    Tian X H, Qu H J, Liu X S, et al. Discussion on quartz dissolution and its mechanisms of the Upper Paleozoic tight gas reservoirs in the eastern Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(11): 2005-2012(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201611008.htm
    [37]
    尹相东, 蒋恕, 吴鹏, 等. 致密砂岩酸性和碱性成岩环境特征及对储层物性的控制: 以鄂尔多斯盆地临兴和神府地区为例[J]. 地质科技通报, 2021, 40(1): 142-151. doi: 10.19509/j.cnki.dzkq.2021.0109

    Yin X D, Jiang S, Wu P, et al. Features of the acid and alkaline diagenetic environment of tight sandstones and the control of the reservoir physical properties: A case study of the Linxing and Shenfu district, eastern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 142-151(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0109
    [38]
    Lander R H, Bonnell L M. A model for fibrous illite nucleation and growth in sandstones[J]. AAPG Bulletin, 2010, 94(8): 1161-1187.
    [39]
    Casey W H, Bunker B C. Leaching of mineral and glass surfaces during dissolution[J]. Reviews in Mineralogy, 1990, 23(5): 397-426.
    [40]
    Oelkers E H. Gislason S R. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25℃ and pH=3 and 11[J]. Geochimica et Cosmochimica Acta, 2001, 65(21): 3671012001.
    [41]
    Chipera S J, Apps J A. Geochemical stability of natural zeolites[J]. Reviews in Mineralogy and Geochemistry, 2001, 45(1): 117-161.
    [42]
    De'Gennaro M. Hydrothermal conversion of trachytic glass to zeolite: 3. Monocationic model glasses[J]. Clays & Clay Minerals, 1999, 47(3): 348-357.
    [43]
    Leggo P J, Cochemé, J J, Demant A, et al. The role of argillic alteration in the zeolitization of volcanic glass[J]. Mineralogical Magazine, 2001, 65(5): 653-663.
    [44]
    Hay R L, Sheppard R A. Occurrence of zeolites in sedimentary rocks: An overview[J]. Reviews in Mineralogy and Geochemistry, 2001, 45(1): 217-234.
    [45]
    Hall A. Zeolitization of volcaniclastic sediments: The role of temperature and pH[J]. Journal of Sedimentary Research, 1998, 68(5): 739-745.
    [46]
    Gislason S R, Oelkers E H. Mechanism, rates, and consequences of basaltic glass dissolution: Ⅱ. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature[J]. Geochimica et Cosmochimica Acta, 2003, 67(20): 3817-3832.
    [47]
    Gudbrandsson S, Wolff-Boenisch D, Gislason S R, et al. An experimental study of crystalline basalt dissolution from 2≤pH≤11 and temperatures from 5 to 75℃[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5496-5509.
    [48]
    Luquot L, Andreani M, Gouze P, et al. CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation-Otway Basin-Australia)[J]. Chem. Geol., 2012, 294: 75-88.
    [49]
    Hocking M W A, Hannington M D, Percival J B, et al. Clay alteration of volcaniclastic material in a submarine geothermal system, Bay of Plenty, New Zealand[J]. Journal of Volcanology & Geothermal Research, 2010, 191(3/4): 180-192.
    [50]
    Şans B, Ekinci E F, Kadir S, et al. Genesis of smectite in siliciclastics and pyroclastics of the Eocene Islambeyli Formation in the Lalapaşa region, NW Thrace, Turkey[J]. Clay Minerals, 2015, 50(4): 459-483.
    [51]
    Lanson B, Sakharov B A, Claret F, et al. Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray diffraction results using the multi-specimen method[J]. American Journal of Science, 2009, 309(6): 476-516.
    [52]
    Awwiller D N. Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks: A study from the Texas Gulf Coast Paleocene-Eocene[J]. Journal of Sedimentary Petrology, 1993, 63(3): 501-512.
    [53]
    邬金华, 余素玉, 许仕策, 等. 蒙皂石伊利石化反应机理和框架性行为模式[J]. 地质科学, 1999, 34(4): 498-505. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904011.htm

    Wu J H, Yu S Y, Xu S C. Smectite illitization reaction mechanism and ramework model of its behavours[J]. Geological Science, 1999, 34(4): 498-505(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904011.htm
    [54]
    Stroker T M, Harris N B, Elliott W, et al. Diagenesis of a tight gas sand reservoir: Upper Cretaceous Mesaverde Group, Piceance Basin, Colorado[J]. Marine and Petroleum Geology, 2013, 40(1): 48-68.
    [55]
    Berger G, Lacharpagne J C, Velde B, et al. Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences[J]. Applied Geochemistry, 1997, 12(1): 23-35.
    [56]
    Peltonen C, Marcussen Y, Bjrlykke K, et al. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties[J]. Marine and Petroleum Geology, 2009, 26(6): 887-898.
    [57]
    黄思静, 黄可可, 冯文立, 等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生和川西凹陷三叠系须家河组的研究[J]. 地球化学, 2009, 38(5): 498-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200905010.htm

    Huang S J, Huang K K, Feng W L, et al. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis: A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, western Sichuan Depression[J]. Geochimica, 2009, 38(5): 498-506(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200905010.htm
    [58]
    康逊, 胡文瑄, 曹剑, 等. 钾长石和钠长石差异溶蚀与含烃类流体的关系: 以准噶尔盆地艾湖油田百口泉组为例[J]. 石油学报, 2016, 37(11): 1381-1393. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201611006.htm

    Kang X, Hu W X, Cao J, et al. Relationship between hydrocarbon bearing fluid and the differential corrosion of potash feldspar and albite: A case study of Baikouquan Formation in Aihu Oilfield, Junggar Basin[J]. Acta Petrolei Sinica, 2016, 37(11): 1381-1393(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201611006.htm
    [59]
    Wise S, Smellie J, Aghib F, et al. Authigenic smectite clay coats in CRP-3 drillcore, Victoria Land Basin, Antarctica, as a possible indicator of fluid flow: A progress report[J]. Terra Antartica, 2001, 8(3): 281-298.
    [60]
    Thyne G, Bernard P, Boudrea C. Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation, North Sea[J]. AAPG Bulletin, 2001, 85(4): 621-635.
    [61]
    田建锋, 高永利, 张蓬勃, 等. 鄂尔多斯盆地合水地区长7致密油储层伊利石成因[J]. 石油与天然气地质, 2013, 34(5): 700-707. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201305020.htm

    Tian J F, Gao Y L, Zhang P B, et al. Genesis of illite in Chang 7 tight oil reservoir in Heshui area, Ordos Basin[J]. Oil and Gas Geology, 2013, 34(5): 700-707(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201305020.htm
    [62]
    Ajdukiewicz J M, Nicholson P H, Esch W L. Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation, Gulf of Mexico[J]. AAPG Bulletin, 2010, 94 (8): 1189-1227.
    [63]
    Birkle P, Van D C, Dasgupta K, et al. Controls on illite cementation in unayzah sandstones, saudi arabia: Mineralogy, K-Ar dating, numerical modeling, and hydrothermal experiments[J]. Journal of Sedimentary Research, 2019, 89(2): 89-109.
    [64]
    Storvoll V, BjØrlykke K, Karlsen D, et al. Porosity preservation in reservoir sandstones due to grain-coating illite: A study of the Jurassic Garn Formation from the Kristin and Lavrans fields, offshore Mid-Norway[J]. Marine & Petroleum Geology, 2002, 19(6): 767-781.
    [65]
    Tang L X, Gluyas J, Jones S. Porosity preservation due to grain coating illite/smectite: Evidence from Buchan Formation (Upper Devonian) of the Ardmore Field, UK North Sea[J]. Proceedings of the Geologists' Association, 2018, 129(2): 202-214.
    [66]
    Al-Ramadan K. Illitization of smectite in Sandstones: The Permian Unayzah reservoir, Saudi Arabia[J]. Arabian Journal for Science & Engineering, 2014, 39(1): 407-412.
    [67]
    葸克来, 李克, 操应长, 等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发, 2020, 47(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006020.htm

    Xi K L, Li K, Cao Y C, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006020.htm
    [68]
    Wilkinson M, Haszeldine R S, Morton A, et al. Deep burial dissolution of K-feldspars in a fluvial sandstone, Pentland Formation, UK Central North Sea[J]. Journal of the Geological Society, 2014, 171(5): 635-647.
    [69]
    Hassouta L, Buatier M D, Potdevin J L, et al. Clay diagenesis in a sandstone reservoir of the Ellon Field (Alwyn, North Sea)[J]. Clays Clay Miner., 1999, 47: 269-285.
    [70]
    Franks S G, Zwingmann H. Origin and timing of late diagenetic illite in the Permian-Carboniferous Unayzah sandstone reservoirs of Saudi Arabia[J]. AAPG Bulletin, 2010, 94(8): 1133-1159.
    [71]
    Weibel R, Nielsen M T, Therkelsen J, et al. Illite distribution and morphology explaining basinal variations in reservoir properties of Upper Jurassic sandstones, Danish North Sea[J]. Marine and Petroleum Geology, 2020, 116: 104290.
    [72]
    Yuan G, Cao Y, Schulz H M, et al. A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs[J]. Earth Science Reviews, 2019, 191: 114-140.
    [73]
    赵姗姗, 张哨楠, 万友利. 塔中顺托果勒低隆区柯坪塔格组长石溶蚀及对储层的影响[J]. 石油实验地质, 2015, 37(3): 293-299. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201503006.htm

    Zhao S S, Zhang S N, Wan Y L. Feldspar dissolution and its effect on reservoir in Kepingtage Formation, Shuntuoguole Low Uplift, central Tarim Basin[J]. Petroleum Geology & Experiment, 2015, 37(3): 293-299(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201503006.htm
    [74]
    Boles J R. Active albitization of plagioclase, Gulf Coast Tertiary[J]. American Journal of Science, 1982, 282(2): 165-180.
    [75]
    Ramseyer K, Boles J R, Lichtner P C. Mechanism of plagioclase albitization[J]. Journal of Sedimentary Petrology, 1992, 62(3): 349-356.
    [76]
    Perez R J, Boles J R. An empirically derived kinetic model for albitization of detrital plagioclase[J]. American Journal of Science, 2005, 305: 312-343.
    [77]
    Hvelmann J, Putnis A, Geisler T, et al. The replacement of plagioclase feldspars by albite: Observations from hydrothermal experiments[J]. Contributions to Mineralogy and Petrology, 2010, 159(1): 43-59.
    [78]
    Chowdhury A H, Noble J P A. Feldspar albitization and feldspar cementation in the Albert Formation reservoir sandstones, New Brunswick, Canada[J]. Marine and Petroleum Geology, 1993, 10(4): 394-402.
    [79]
    杨桂芳, 卓胜广, 牛奔, 等. 松辽盆地白垩系砂岩长石碎屑的钠长石化作用[J]. 地质论评, 2003(2): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200302008.htm

    Yang G F, Zhuo S G, Niu B, et al. Albitization of detrital feldspar in Cretaceous sandstone from the Songliao Basin[J]. Geological Review, 2003(2): 45-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200302008.htm
    [80]
    Laura G A, GöTze J, Barca D, et al. Diagenetic albitization in the Tera Group, Cameros Basin (NE Spain) recorded by trace elements and spectral cathodoluminescence[J]. Chemical Geology, 2012, 312/313: 148-162.
    [81]
    杨宝星, 林仲虔, 古世祥. 松辽盆地北部下白垩统下部含浊沸石砂岩的成岩作用[J]. 石油与天然气地质, 1991, 12(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199101000.htm

    Yang B X, Lin Z Q, Gu S X. Diagenesis of laumontite-bearing sandstones in lower part of Lower Cretaceous, north Songliao Basin[J]. Oil & Gas Geology, 1991, 12(1), 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199101000.htm
    [82]
    肖萌, 袁选俊, 吴松涛, 等. 准噶尔盆地玛湖凹陷百口泉组砾岩储层特征及其主控因素[J]. 地学前缘, 2019, 26(1): 212-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901021.htm

    Xiao M, Yuan X J, Wu S T, et al. Conglomerate reservoir characteristics of and main controlling factors for the Baikouquan Formation, Mahu Sag, Junggar Basin[J]. Earth Science Frontiers, 2019, 26(1): 212-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901021.htm
    [83]
    杨晓萍, 裘怿楠. 鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系[J]. 沉积学报, 2002, 20(4): 628-632. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200204014.htm

    Yang X P, Qiu Y N. Formation process and distribution of laumontite in Yanchang Formation (Upper Triassic) of Ordos Basin[J]. Acta Sedimentologica Sinica, 2002, 20(4): 628-632(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200204014.htm
    [84]
    孟涛, 刘鹏, 邱隆伟, 等. 咸化湖盆深部优质储集层形成机制与分布规律: 以渤海湾盆地济阳坳陷渤南洼陷古近系沙河街组四段上亚段为例[J]. 石油勘探与开发, 2017, 44(6): 896-906. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706008.htm

    Meng T, Liu P, Qiu L W, et al. Formation and distribution of the high quality reservoirs in a deep saline lacustrine basin: A case study from the upper part of the 4th member of Paleogene Shahejie Formation in Bonan Sag, Jiyang Depression, Bohai Bay Basin, East China[J]. Petroleum Exploration & Development, 2017, 44(6): 948-959(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706008.htm
    [85]
    万友利, 丁晓琪, 白晓亮, 等. 塔中地区志留系海相碎屑岩储层石英溶蚀成因及影响因素分析[J]. 沉积学报, 2014, 32(1): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201401016.htm

    Wan Y L, Ding X Q, Bai X L, et al. Quartz dissolution causes and influencing factors in the Silurian marine clastic reservoir rocks in central Tarim Basin[J]. Acta Sedimentologica Sinica, 2014, 32(1): 138-147(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201401016.htm
    [86]
    孟祥超, 徐洋, 韩守华, 等. 中拐地区上乌尔禾组浊沸石展布规律及优质储层预测[J]. 东北石油大学学报, 2013, 37(1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201301005.htm

    Meng X C, Xu Y, Han S H, et al. Distribution rule of laumontite and favorable reservoir forecast of P3w in Zhongguai region[J]. Journal of Northeast Petroleum University, 2013, 37(1): 16-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201301005.htm
    [87]
    李振华, 邱隆伟, 师政, 等. 准噶尔盆地中拐地区佳二段沸石类矿物成岩作用及其对油气成藏的意义[J]. 中国石油大学学报: 自然科学版, 2014, 38(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201401002.htm

    Li Z H, Qiu L W, Shi Z, et al. Diagenesis of zeolite minerals and its significance for hydrocarbon accumulation in the second member of Jiamuhe Formation of Zhongguai area, Junggar Basin[J]. Journal of China University of Petroleum: Edition of Natural Science, 2014, 38(1): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201401002.htm
    [88]
    胡鑫, 丁晓琪, 朱颖, 等. 龙凤山气田营城组浊沸石胶结物对储层的控制机理[J]. 断块油气田, 2018, 25(2): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201802005.htm

    Hu X, Ding X Q, Zhu Y, et al. Laumontite cement control mechanism of Yingcheng Formation of Longfengshan Gas Field[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 157-161(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201802005.htm
    [89]
    徐国盛, 崔恒远, 刘勇, 等. 东海盆地西湖凹陷古近系花港组砂岩储层致密化与油气充注关系[J]. 地质科技通报, 2020, 39(3): 20-29. doi: 10.19509/j.cnki.dzkq.2020.0303

    Xu G S, Cui H Y, Liu Y, et al. Relationship between sandstone reservoirs densitfication and hydrocarbon charging in the Paleogene Huagang Formation of Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 20-29(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0303
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(435) PDF Downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return