Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Zheng Xiaokang, Yang Zhibing. Numerical simulation of saturated-unsaturated groundwater flow and contaminant transport in a karst aquifer[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 357-366. doi: 10.19509/j.cnki.dzkq.2022.0211
Citation: Zheng Xiaokang, Yang Zhibing. Numerical simulation of saturated-unsaturated groundwater flow and contaminant transport in a karst aquifer[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 357-366. doi: 10.19509/j.cnki.dzkq.2022.0211

Numerical simulation of saturated-unsaturated groundwater flow and contaminant transport in a karst aquifer

doi: 10.19509/j.cnki.dzkq.2022.0211
  • Received Date: 05 Jul 2022
    Available Online: 10 Nov 2022
  • Groundwater in karst aquifers is an important source of drinking water. Due to the complexity of hydrogeological characteristics, it is extremely challenging to analyze and evaluate the groundwater environment in karst aquifers by numerical modeling. In this study, a variable saturation flow equation is used to describe the saturated-unsaturated flow in the aquifer matrix, a pipe flow equation is used to describe the laminar and turbulent flow in karst conduits, and the convective dispersion equation is used to describe solute transport in the matrix and conduits. The accuracy of saturated-unsaturated flow simulation is verified by comparison with experimental data and simulation results from the MODFLOW-CFP code. The numerical model is used to explore the effects of karst conduits and unsaturated parameters on groundwater flow and contaminant transport. These results show that the numerical model can well reproduce the groundwater dynamics in saturated-unsaturated regions and in the karst conduit of the aquifer; furthermore, the karst conduit has a great influence on the seepage field of the aquifer. Relatively rapid flow in the conduit leads to the inflow of surrounding groundwater, affecting the local flow field. As a result, the contaminant is transported through advection in the conduit and is quickly discharged through the outlet(spring). Breakthrough curves show that the response of concentration at the spring is faster than the corresponding location in the matrix. Unsaturated parameters have different effects on the breakthrough characteristics. The model established in this paper improves the simulation methods of groundwater flow, pollutant transport and coupling of matrix-conduit flow with solute transport in the saturated-unsaturated region in karst aquifers. The work deepens the understanding of groundwater dynamics and contaminanttransport in karst aquifers and is thus of great significance to karst hydrogeology and groundwater environment protection.

     

  • loading
  • [1]
    Ford D C, Williams P W. Karst hydrogeology and geomorphology[M]. Chichester: John Wiley & Sons Ltd, 2007.
    [2]
    Goldscheider N, Chen Z, Auler A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677. doi: 10.1007/s10040-020-02139-5
    [3]
    Olarinoye T, Gleeson T, Marx V, et al. Global karst springs hydrograph dataset for research and management of the world's fastest-flowing groundwater[J]. Scientific Data, 2020, 7(1): 1-9. doi: 10.1038/s41597-019-0340-y
    [4]
    王喆. 岩溶地下水系统演化的数值模拟[J]. 地质科技情报, 2013, 32(4): 201-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304032.htm

    Wang Z. Numerical simulation of the karst groundwater system evolution[J]. Geological Science and Technology Information, 2013, 32(4): 201-206 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304032.htm
    [5]
    Zeng S B, Jiang Y J, Liu Z H. Assessment of climate impacts on the karst-related carbon sink in SW China using MPD and GIS[J]. Global and Planetary Change, 2016, 144: 171-181. doi: 10.1016/j.gloplacha.2016.07.015
    [6]
    Shen T M, Li W, Pan W Z, et al. Role of bacterial carbonic anhydrase during CO2 capture in the CO2-H2O-carbonate system[J]. Biochemical Engineering Journal, 2017, 123: 66-74. doi: 10.1016/j.bej.2017.04.003
    [7]
    张春来, 黄芬, 蒲俊兵, 等. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 2021, 8(4): 40-52. doi: 10.19388/j.zgdzdc.2021.04.05

    Zhang C L, Huang F, Pu J B, et al. Estimation of karst carbon sink fluxes and manual intervention to increase carbon sinks in China[J]. Geological Survey of China, 2021, 8(4): 40-52 (in Chinese with English abstract). doi: 10.19388/j.zgdzdc.2021.04.05
    [8]
    罗维均, 杨开萍, 王彦伟, 等. 喀斯特地区不同岩土组构对岩溶碳通量的影响[J]. 地质科技通报, 2022, 41(3): 208-214. doi: 10.19509/j.cnki.dzkq.2022.0088

    Luo W J, Yang K P, Wang W Y, et al. Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 208-214 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0088
    [9]
    Song K, Yang G X, Wang F, et al. Application of geophysical and hydrogeochemical methods to the protection of drinking groundwater in karst regions[J]. International Journal of Environmental Research and Public Health, 2020, 17(10): 3627. doi: 10.3390/ijerph17103627
    [10]
    陈静, 罗明明, 廖春来, 等. 中国岩溶湿地生态水文过程研究进展[J]. 地质科技情报, 2019, 38(6): 221-230. doi: 10.19509/j.cnki.dzkq.2019.0626

    Chen J, Luo M M, Liao C L, et al. Review of Eco-hydrological Process in Karst Wetlands of China[J]. Geological Science and Technology Information, 2019, 38(6): 221-230 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2019.0626
    [11]
    曾斌, 陈植华, 邵长杰, 等. 基于地下水流系统理论的岩溶隧道涌突水来源及路径分析[J]. 地质科技通报, 2022, 41(1): 99-108. doi: 10.19509/j.cnki.dzkq.2022.0006

    Zeng B, Chen Z H, Shao C J, et al. Analysis of source and path of water inrush in karst tunnel based on the theory of groundwater flow system[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 99-108 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0006
    [12]
    Zhu Z, Wang J X, Hu M G, et al. Geographical detection of groundwater pollution vulnerability and hazard in karst areas of Guangxi Province, China[J]. Environmental Pollution, 2019, 245: 627-633. doi: 10.1016/j.envpol.2018.10.017
    [13]
    Jeannin P Y, Artigue G, Butscher C, et al. Karst modelling challenge 1: Results of hydrological modelling[J]. Journal of Hydrology, 2021, 600: 126508. doi: 10.1016/j.jhydrol.2021.126508
    [14]
    Chang Y, Wu J C, Jiang G H, et al. Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model[J]. Journal of Hydrology, 2017, 548: 75-87. doi: 10.1016/j.jhydrol.2017.02.050
    [15]
    Zhou B Q, Yang Z B, Hu R, et al. Assessing the impact of tunnelling on karst groundwater balance by using lumped parameter models[J]. Journal of Hydrology, 2021, 599: 126375.
    [16]
    Doummar J, Sauter M, Geyer T. Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She): Identification of relevant parameters influencing spring discharge[J]. Journal of Hydrology, 2012, 426: 112-123.
    [17]
    Mayaud C, Wagner T, Benischke R, et al. Understanding changes in the hydrological behaviour within a karst aquifer (Lurbach system, Austria)[J]. Carbonates and Evaporites, 2016, 31(4): 357-365.
    [18]
    Clement T P, Wise W R, Molz F J. A physically based, two-dimensional, finite-difference algorithm for modeling variably saturated flow[J]. Journal of Hydrology, 1994, 161(1/4): 71-90.
    [19]
    Liedl R, Sauter M, Hückinghaus D, et al. Simulation of the development of karst aquifers using a coupled continuum pipe flow model[J]. Water Resources Research, 2003, 39(3): 1057.
    [20]
    Shoemaker W B, Kuniansky E L, Birk S, et al. Documentation of a conduit flow process (CFP) for MODFLOW-2005[M]. Reston, Va: US Department of the Interior, US Geological Survey, 2008.
    [21]
    Reimann T, Giese M, Geyer T, et al. Representation of water abstraction from a karst conduit with numerical discrete-continuum models[J]. Hydrology and Earth System Sciences, 2014, 18(1): 227-241.
    [22]
    焦友军, 潘晓东, 曾洁, 等. 岩溶管道结构影响泉流量变化的数值模拟研究[J]. 中国岩溶, 2017, 36(5): 736-742. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705018.htm

    Jiao Y J, Pan X D, Zeng J, et al. Numerical modeling of the influence of karst-conduit structure on variation of spring flow[J]. Carsologica Sinica, 2017, 36(5): 736-742 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705018.htm
    [23]
    Giese M, Reimann T, Bailly Comte V, et al. Turbulent and laminar flow in karst conduits under unsteady flow conditions: Interpretation of pumping tests by discrete conduit-continuum modeling[J]. Water Resources Research, 2018, 54(3): 1918-1933.
    [24]
    Shu L C, Zou Z K, Li F L, et al. Laboratory and numerical simulations of spatio-temporal variability of water exchange between the fissures and conduits in a karstic aquifer[J]. Journal of Hydrology, 2020, 590: 125219.
    [25]
    Zheng X K, Yang Z B, Wang S, et al. Evaluation of hydrogeological impact of tunnel engineering in a karst aquifer by coupled discrete-continuum numerical simulations[J]. Journal of Hydrology, 2021, 597: 125765.
    [26]
    de Rooij R, Perrochet P, Graham W. From rainfall to spring discharge: Coupling conduit flow, subsurface matrix flow and surface flow in karst systems using a discrete continuum model[J]. Advances in Water Resources, 2013, 61: 29-41.
    [27]
    Malenica L, Gotovac H, Kamber G, et al. Groundwater flow modeling in karst aquifers: Coupling 3d matrix and 1d conduit flow via control volume isogeometric analysis-experimental verification with a 3d physical model[J]. Water, 2018, 10(12): 1787.
    [28]
    Zheng C M, Wang P P. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and Chemical Reactions of Contaminants in Groundwater Systems: Documentation and user's guide, DTIC Document[M]. Tuscaloosa, Alamaba: University of Alabama, 1999.
    [29]
    Spiessl S M, Prommer H, Licha T, et al. A process-based reactive hybrid transport model for coupled discrete conduit continuum systems[J]. Journal of Hydrology, 2007, 347(1/2): 23-34.
    [30]
    Chen Y F, Yu H, Ma H Z, et al. Inverse modeling of saturated-unsaturated flow in site-scale fractured rocks using the continuum approach: A case study at Baihetan dam site, Southwest China[J]. Journal of Hydrology, 2020, 584: 124693.
    [31]
    Chen Y F, Ye Y K, Hu R, et al. Modeling unsaturated flow in fractured rocks with scaling relationships between hydraulic parameters[J/OL]. Journal of Rock Mechanics and Geotechnical Engineering, 2022. https//doi.org/10.1016/j.jrmge.2022.02.008.
    [32]
    Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333.
    [33]
    Vennard J K, Street R L. Elementary fluid mechanics[M]. New York: John Wiley, 1975.
    [34]
    Van Genuchten M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [35]
    Horlacher H B, Lüdecke H J. Strömungsberechnung für Rohrsysteme[M]. Ehningen, Germany: Springer-Verlag, 1992.
    [36]
    Celia M A, Bouloutas E T, Zarba R L. A general mass conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research, 1990, 26(7): 1483-1496.
    [37]
    Vauclin M, Khanji D, Vachaud G. Experimental and numerical study of a transient, two dimensional unsaturated saturated water table recharge problem[J]. Water Resources Research, 1979, 15(5): 1089-1101.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(332) PDF Downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return