Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wu Feng, Luo Yingying, Li Yuhan, Yang Zongheng, Zhang Hongqian, Liu Jianfeng, Shi Xiangchao. Fracture characteristics and logging identification of lacustrine limestone-shale reservoirs in Da′anzhai Member, Gongshanmiao Oilfield, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 55-67. doi: 10.19509/j.cnki.dzkq.2022.0230
Citation: Wu Feng, Luo Yingying, Li Yuhan, Yang Zongheng, Zhang Hongqian, Liu Jianfeng, Shi Xiangchao. Fracture characteristics and logging identification of lacustrine limestone-shale reservoirs in Da′anzhai Member, Gongshanmiao Oilfield, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 55-67. doi: 10.19509/j.cnki.dzkq.2022.0230

Fracture characteristics and logging identification of lacustrine limestone-shale reservoirs in Da′anzhai Member, Gongshanmiao Oilfield, Sichuan Basin

doi: 10.19509/j.cnki.dzkq.2022.0230
  • Received Date: 05 Sep 2022
    Available Online: 10 Nov 2022
  • Lacustrine limestone and shale reservoirs are both developed in the Da′anzhai Member of Gongshanmiao Oilfield, Sichuan Basin. Whether fractures are developed or not is the key to the reservoirs in the Da'anzhai Member. Based on core observations, CT scanning and scanning electron microscopy, the characteristics of fractures in limestone and shale were analyzed, the influences of sedimentary facies, mineral content, TOC and faults on fractures were analyzed, and identification plots of fractures in lacustrine limestone and shale were established. The results show that lacustrine limestone is mainly developed with structural fractures and interlayer fractures, while lacustrine shale is mainly developed with interlayer fractures, which are mainly horizontal and low-angle fractures. In the lacustrine limestone, the fractures are mainly developed in the thick limestone, thick limestone with asingle thin shale band and thick limestone with multiple thin shale bands in the Dasan Member and Dayi Member. In lacustrine shale, fractures are mainly developed in the interbeddedthin shale and thin limestone in theDaer-a Member. The ΔGR~ΔlogRTcross plot was preferred for lacustrine limestone fracture identification. Fractures in lacustrine shale were identified by the phenomena of increasing acoustic values and "negative difference" in dual lateral logging. The results can provide ideas and references for fracture evaluation of lacustrine limestone and shale.

     

  • loading
  • [1]
    郑荣才, 陈洪德, 刘文均, 等. 川北大安寨段储层深部热水溶蚀作用[J]. 石油与天然气地质, 1996, 17(4): 293-301. doi: 10.3321/j.issn:0253-9985.1996.04.007

    Zheng R C, Chen H D, Liu W J, et al. Deep hydrothermal dissolution of Da'anzhai reservoirs in North Sichuan[J]. Oil and Gas Geology, 1996, 17(4): 293-301(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.1996.04.007
    [2]
    邓康龄. 四川盆地柏垭-石龙场地区自流井组大安寨段油气成藏地质条件[J]. 油气地质与采收率, 2001, 8(2): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200102002.htm

    Deng K L. Geological conditions of hydrocarbon accumulation in Da'anzhai Member of Ziliujing Formation in Baiya-Shilongchang area, Sichuan Basin[J]. Oil and Gas Geology and Recovery, 2001, 8(2): 9-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200102002.htm
    [3]
    张金川, 聂海宽, 徐波, 等. 四川盆地页岩气成藏地质条件[J]. 天然气工业, 2008, 28(2): 151-156. doi: 10.3787/j.issn.1000-0976.2008.02.045

    Zhang J C, Nie H K, Xu B, et al. Geological conditions of shale gas accumulation in the Sichuan Basin[J]. Natural Gas Industry, 2008, 28(2): 151-156(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2008.02.045
    [4]
    Wang S Y, Li J Z, Li D H, et al. The potential of tight oil resource in Jurassic Da'anzhai Formation of the Gongshanmiao Oilfield, central Sichuan Basin[J]. Geology in China, 2013, 40(2): 477-486. doi: 10.3969/j.issn.1000-3657.2013.02.012
    [5]
    Chen Z H, Lavoie D, Malo M, et al. A dual-porosity model for evaluating petroleum resource potential in unconventional tight-shale plays with application to Utica Shale, Quebec (Canada)[J]. Marine and Petroleum Geology, 2017, 80: 333-348. doi: 10.1016/j.marpetgeo.2016.12.011
    [6]
    Gale J F W, Laubach S E, Olson J E, et al. Natural fractures in shale: A review and new observations[J]. AAPG Bulletin, 2014, 98(11): 2165-2176. doi: 10.1306/08121413151
    [7]
    Avanzini A, Balossino P, Brignoli M, et al. Lithologic and geomechanical facies classification for sweet spot identification in gas shale reservoir[J]. Interpretation, 2016, 41(3): SL21-SL31.
    [8]
    Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 26(31): 26-30.
    [9]
    王伟东, 彭军, 夏青松, 等. 川北大安寨生屑灰岩储层主控因素及预测思路[J]. 西南石油大学学报: 自然科学版, 2020, 42(4): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202004002.htm

    Wang W D, Peng J, Xia Q S, et al. Main controlling factors and prediction ideas of bioclastic limestone reservoirs in Da'anzhai, northern Sichuan[J]. Journal of Southwest Petroleum University: Natural Science Edition, 2020, 42(4): 13-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202004002.htm
    [10]
    胡伟光, 易小林, 范春华. 四川盆地元坝地区大安寨段储层裂缝预测[J]. 物探化探计算技术, 2018, 40(5): 565-572. doi: 10.3969/j.issn.1001-1749.2018.05.02

    Hu W G, Yi X L, Fan C H. Prediction of reservoir fractures in Da'anzhai Member of Yuanba area, Sichuan Basin[J]. Geophysical and Geophysical Calculation Technology, 2018, 40(5): 565-572(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1749.2018.05.02
    [11]
    曾棒, 刘小平, 刘国勇, 等. 陆相泥页岩层系岩相测井识别与预测: 以南堡凹陷拾场次洼为例[J]. 地质科技通报, 2021, 40(1): 69-79. doi: 10.19509/j.cnki.dzkq.2021.0103

    Zeng B, Liu X P, Liu G Y, et al. Logging identification and prediction of lithofacies of lacustrine shale system in Shichang Sub-Sag, Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 69-79(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0103
    [12]
    曾宏斌, 王芙蓉, 罗京, 等. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征[J]. 地质科技通报, 2021, 40(5): 242-252. doi: 10.19509/j.cnki.dzkq.2021.0022

    Zeng H B, Wang F R, Luo J, et al. Characteristics of pore structure of intersalt shale oil reservoir by low temperature nitrogen adsorption and high pressure mercury pressure methods in Qianjiang Sag[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 242-252(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0022
    [13]
    史彪, 吴丰, 李树新, 等. 海陆过渡相优质页岩测井识别: 以鄂尔多斯盆地大宁—吉县地区山2段为例[J/OL]. 地质科技通报, 2022. DOI: 10.19509/j.cnki.dzkq.2022.0107.

    Shi B, Wu F, Li S X, et al. Logging identification of high-quality shale of marine-continent transitional facies: An example of Shan 2 Member of Daning-Jixian area in Ordos Basin[J/OL]. Bulletin of Geological Science and Technology, 2022. DOI: 10.19509/j.cnki.dzkq.2022.0107 (in Chinese with English abstract).
    [14]
    Nikolaev M Y, Kazak A V. Liquid saturation evaluation in organic-rich unconventional reservoirs: A comprehensive review[J]. Earth-Science Reviews, 2019, 194: 327-349. doi: 10.1016/j.earscirev.2019.05.012
    [15]
    杨跃明, 黄东, 杨光, 等. 四川盆地侏罗系大安寨段湖相页岩油气形成地质条件及勘探方向[J]. 天然气勘探与开发, 2019, 42(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201902002.htm

    Yang Y M, Huang D, Yang G, et al. Geological conditions and exploration direction of lacustrine shale oil and gas formation in Jurassic Da'anzhai Member, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(2): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201902002.htm
    [16]
    孙莎莎, 董大忠, 李育聪, 等. 四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素[J]. 石油与天然气地质, 2021, 42(1): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101012.htm

    Sun S S, Dong D Z, Li Y C, et al. Geological characteristics and controlling factors of hydrocarbon accumulation in terrestrial shale in the Da'anzhai Member of the Jurassic Ziliujing Formation, Sichuan Basin[J]. Oil and Gas Geology, 2021, 42(1): 124-135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101012.htm
    [17]
    周广照, 刘红岐. 川中地区侏罗系大安寨段致密油储层综合评价[J]. 科学技术与工程, 2017, 17(29): 241-249. doi: 10.3969/j.issn.1671-1815.2017.29.035

    Zhou G Z, Liu H Q. Comprehensive evaluation of tight oil reservoirs in the Jurassic Da'anzhai Member in Central Sichuan[J]. Science Technology and Engineering, 2017, 17(29): 241-249(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2017.29.035
    [18]
    卢炳雄, 郑荣才, 梁西文, 等. 川东地区侏罗系自流井组大安寨段页岩气(油)储层评价[J]. 石油与天然气地质, 2015, 36(3): 488-496.

    Lu B X, Zheng R C, Liang X W, et al. Evaluation of shale gas (oil) reservoirs in Da'anzhai Member of Jurassic Ziliujing Formation in eastern Sichuan[J]. Oil & Gas Geology, 2015, 36(3): 488-496(in Chinese with English abstract).
    [19]
    蒋裕强, 漆麟, 邓海波, 等. 四川盆地侏罗系油气成藏条件及勘探潜力[J]. 天然气工业, 2010, 30(3): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201003009.htm

    Jiang Y Q, Qi L, Deng H B, et al. Hydrocarbon accumulation conditions and exploration potential of Jurassic in Sichuan Basin[J]. Natural Gas Industry, 2010, 30(3): 22-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201003009.htm
    [20]
    康家豪, 王兴志, 谢圣阳, 等. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4): 53-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202204006.htm

    Kang J H, Wang X Z, Xie S Y, et al. Lithofacies types and reservoir characteristics of shale in the Da'anzhai Member of Jurassic in Central Sichuan[J]. Lithologic Reservoir, 2022, 34(4): 53-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202204006.htm
    [21]
    冯动军. 四川盆地侏罗系大安寨段陆相页岩油气地质特征及勘探方向[J]. 石油实验地质, 2022, 44(2): 219-230. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202202003.htm

    Feng Dongjun. Geological characteristics and exploration direction of continental shale gas in Jurassic Daanzhai Member, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 219-230(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202202003.htm
    [22]
    Laubach S E. Practical approaches to identifying sealed and open fractures[J]. AAPG Bulletin, 2003, 87(4): 561-579.
    [23]
    吴丰, 黄丹, 袁龙, 等. 青西油田窿六区块储层裂缝有效性研究[J]. 特种油气藏, 2012, 19(5): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201205009.htm

    Wu F, Huang D, Yuan L, et al. Study on reservoir fracture effectiveness of block Long 6 of Qingxi Oilfield[J]. Special Oil and Gas Reservoirs, 2012, 19(5): 42-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201205009.htm
    [24]
    Stadtmüller M. Well logging interpretation methodology for carbonate formation fracture system properties determination[J]. Acta Geophysica, 2019, 67(6): 1933-1943.
    [25]
    Shalaby M R, Islam M A. Fracture detection using conventional well logging in carbonate Matulla Formation, Geisum Oilfield, southern Gulf of Suez, Egypt[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7: 977-989.
    [26]
    Lazar O R, Bohacs K M, Macquaker J, et al. Capturing key attributes of fine-frained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
    [27]
    Mohsen E, Mehran A, Ali R M, et al. Characterization of micro-fractures in carbonate Sarvak reservoir, using petrophysical and geological data, SW Iran[J]. Journal of Petroleum Scienence and Engineering, 2018, 170: 675-695.
    [28]
    Permadi P, Marhaendrajana T, Nandya S, 等. 碳酸盐岩储集层微裂缝的识别与表征[J]. 石油勘探与开发, 2022, 49(2): 366-376. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202013.htm

    Permadi P, Marhaendrajana T, Nandya S, et al. Identification and characterization of microfractures in carbonate samples[J]. Petroleum Exploration and Development, 2022, 49(2): 366-376(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202013.htm
    [29]
    王濡岳, 胡宗全, 周彤, 等. 四川盆地及其周缘五峰组-龙马溪组页岩裂缝发育特征及其控储意义[J]. 石油与天然气地质, 2021, 42(6): 1295-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106005.htm

    Wang R Y, Hu Z Q, Zhou T, et al. Development characteristics of shale fractures in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin and its periphery and its significance for reservoir control[J]. Oil & Gas Geology, 2021, 42(6): 1295-1306(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106005.htm
    [30]
    汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019, 40(1): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901006.htm

    Wang H, He Z L, Zhang Y G, et al. Types of microfractures in marine shale reservoirs in the Sichuan Basin and their effects on the physical properties of the reservoirs[J]. Oil & Gas Geology, 2019, 40(1): 41-49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901006.htm
    [31]
    苗凤彬, 彭中勤, 汪宗欣, 等. 雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J]. 地质科技通报, 2020, 39(2): 31-42. doi: 10.19509/j.cnki.dzkq.2020.0204

    Miao F B, Peng Z Q, Wang Z X, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, western margin of Xuefeng Uplift[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 31-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0204
    [32]
    苟启洋, 徐尚, 郝芳, 等. 基于成像测井的泥页岩裂缝研究: 以焦石坝区块为例[J]. 地质科技通报, 2020, 39(6): 193-200. doi: 10.19509/j.cnki.dzkq.2020.0620

    Gou Q Y, Xu S, Hao F, et al. Research on mud shale fractures based on image logging: A case study of Jiaoshiba area[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 193-200(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0620
    [33]
    孙天礼, 欧成华, 郭威, 等. 元坝大安寨灰岩-砂岩-页岩储集模式及开发对策[J]. 特种油气藏, 2021, 28(6): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106005.htm

    Sun T L, Ou C H, Guo W, et al. Accumulation mode and development countermeasures for limestone-sandstone-shale reservoirs in Da'anzhai Member, Yuanba Block[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 36-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106005.htm
    [34]
    李英强, 何登发. 四川盆地及邻区早侏罗世构造-沉积环境与原型盆地演化[J]. 石油学报, 2014, 35(2): 219-232.

    Li Y Q, He D F. Early Jurassic tectonics-sedimentary environment and prototype basin evolution in Sichuan Basin and adjacent areas[J]. Journal of Petroleum, 2014, 35(2): 219-232(in Chinese with English abstract).
    [35]
    厚刚福, 宋兵, 倪超, 等. 致密油源储配置特征及油气勘探意义: 以四川盆地川中地区侏罗系大安寨段为例[J]. 沉积学报, 2021, 39(5): 1078-1085. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202105003.htm

    Hou G F, Song B, Ni C, et al. Source-reservoir configuration characteristics of tight oil and its significance for oil and gas exploration: A case study of the Jurassic Da'anzhai Member in the Central Sichuan Basin[J]. Acta Sedimentology, 2021, 39(5): 1078-1085(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202105003.htm
    [36]
    李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403

    Li C H, Zhao L, Liu B, et al. Research progress and development trend of carbonate fractures[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0403
    [37]
    赵军龙, 巩泽文, 李甘, 等. 碳酸盐岩裂缝性储层测井识别及评价技术综述与展望[J]. 地球物理学进展, 2012, 27(2): 537-547. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201202018.htm

    Zhao J L, Gong Z W, Li G, et al. Review and prospect of logging identification and evaluation technology of carbonate fractured reservoirs[J]. Advances in Geophysics, 2012, 27(2): 537-547(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201202018.htm
    [38]
    袁玉松, 周雁, 邱登峰, 等. 泥页岩非构造裂缝形成机制及特征[J]. 现代地质, 2016, 30(1): 155-162.

    Yuan Y S, Zhou Y, Qiu D F, et al. Formation mechanism and characteristics of non-tectonic fractures in shales[J]. Geoscience, 2016, 30(1): 155-162(in Chinese with English abstract).
    [39]
    Pireh A, Alavi S A, Ghassemi M R, et al. Analysis of natural fractures and effect of deformation intensity on fracture density in Garau Formation for shale gas development within two anticlines of Zagros fold and thrust belt, Iran[J]. Journal of Petroleum Science and Engineering, 2015, 125: 162-180.
    [40]
    Amosu A, Imsalem M, Sun Y. Effective machine learning identification of TOC-rich zones in the Eagle Ford Shale[J]. Journal of Applied Geophysics, 2021, 2: 104311.
    [41]
    Bernard S, Horsfield B, Schulz H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany)[J]. Marine and Petroleum Geology, 2012, 31(1): 0-89.
    [42]
    薛莲花, 杨巍, 仲佳爱, 等. 富有机质页岩生烃阶段孔隙演化: 来自鄂尔多斯延长组地质条件约束下的热模拟实验证据[J]. 地质学报, 2015, 89(5): 970-978. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201601009051.htm

    Xue L H, Yang W, Zhong J A, et al. Pore evolution of organic-rich shale during hydrocarbon generation: Evidence from thermal simulation experiments under the constraints of geological conditions in the Ordos Yanchang Formation[J]. Acta Geologica Sinica, 2015, 89(5): 970-978(in Chinese with English abstract). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201601009051.htm
    [43]
    谷阳, 徐晟, 张炜, 等. 黔北地区牛蹄塘组页岩储层裂缝特征[J]. 科学技术与工程, 2021, 21(9): 3556-3562. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202109018.htm

    Gu Y, Xu S, Zhang Y, et al. Fracture characteristics of shale reservoirs of Niutitang Formation in northern Guizhou[J]. Science Technology and Engineering, 2021, 21(9): 3556-3562(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202109018.htm
    [44]
    Cao T, Deng M, Cao Q, et al. Pore formation and evolution of organic-rich shale during the entire hydrocarbon generation process: Examination of artificially and naturally matured samples[J]. Journal of Natural Gas Science and Engineering, 2021, 93: 104020.
    [45]
    Wu F, Dai J, Wen Z, et al. Resistivity anisotropy analysis of Longmaxi shale by resistivity measurements, scanning electron microscope, and resistivity simulation[J]. Journal of Applied Geophysics, 2022, 203: 104700.
    [46]
    Lai J, Wang G W, Fan Q X, et al. Geophysical well-Log evaluation in the era of unconventional hydrocarbon resources: A review on current status and prospects[J]. Surveys in Geophysics, 2022, 43(3): 913-957.
    [47]
    陆云龙, 崔云江, 关叶钦, 等. 基于阵列声波测井的裂缝有效性定量评价方法[J]. 测井技术, 2022, 46(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202201011.htm

    Lu Y L, Cui Y J, Guan Y Q, et al. Quantitative evaluation method of fracture effectiveness based on array acoustic logging[J]. Logging Technology, 2022, 46(1): 64-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202201011.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(456) PDF Downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return