Citation: | Shan Bin, Zhou Wanli. Methods and prospects for lithospheric structure imaging[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 112-121. doi: 10.19509/j.cnki.dzkq.2022.0241 |
In recent years, with rich observation data, the perfection of physical chemistry theory and the remarkable improvement of computer technology, great changes have taken place in the understanding of lithospheric physical and chemical properties. This paper introduces the current imaging methods of lithospheric structure and their advantages and disadvantages. Based on thermodynamic simulation and probability density inversion, we study the lithospheric thermal and compositional structure in South China (Sichuan Basin, Jiangnan Orogenic Belt, Lower Yangtze Craton and Cathaysian Block)using the observed Rayleigh wave phase velocity dispersion curve, geoid height, topography and surface heat flow. The results show that the lithosphere in the east of South China block is thin, and the lithospheric mantle is dominated by fertile peridotite, while the subduction of the Pacific plate from east to west may be the main dynamic mechanism of lithospheric thinning in the east of South China.Finally, we introduce the existing problems of lithospheric structure imaging and the prospect of future lithospheric structure imaging based on the current research status of lithospheric structure.
[1] |
Burov E B. Rheology and strength of the lithosphere[J]. Marine and Petroleum Geology, 2011, 28(8): 1402-1443. doi: 10.1016/j.marpetgeo.2011.05.008
|
[2] |
Fischer K M, Ford H A, Abt D L, et al. The lithosphere-asthenosphere boundary[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 551-575. doi: 10.1146/annurev-earth-040809-152438
|
[3] |
Turcotte D L, Schubert G. Geodynamics[M]. 3rd edn, [S. l.]: [s. n.]: 2014.
|
[4] |
Watts A B. Isostasy and flexure of the lithosphere[M]. Cambridge: Cambridge Univ. Press, 2001.
|
[5] |
Jones A G. Imaging the continental upper mantle using electromagnetic methods[J]. Lithos, 1999, 48(1/4): 57-80.
|
[6] |
Griffin W L, O'Reilly S Y, Ryan C G. The composition and origin of sub-continental lithospheric mantle[J]. Geochemical Society Spec. Publ., 1999, 6: 13-45.
|
[7] |
Green D H, Hibberson W O, Kovács I, et al. Water and its influence on the lithosphere-asthenosphere boundary[J]. Nature, 2010, 467(7314): 448-451. doi: 10.1038/nature09369
|
[8] |
Ranalli G. Rheology of the Earth[M]. Springer Science & Business Media, 1995.
|
[9] |
Pearson D G, Canil D, Shirey S B. Mantle samples included in volcanic rocks: Xenoliths and diamonds[J]. Treatise on Geochemistry, 2003, 2: 568.
|
[10] |
Furlong K P, Chapman D S. Heat flow, heat generation, and the thermal state of the lithosphere[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 385-410. doi: 10.1146/annurev.earth.031208.100051
|
[11] |
Griffin W L, O'Reilly S Y. Cratonic lithospheric mantle: Is anything subducted?[J]. Episodes Journal of International Geoscience, 2007, 30(1): 43-53.
|
[12] |
Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 2005, 43(1): 156-179.
|
[13] |
Jordan T H. Structure and formation of the continental tectosphere[J]. Journal of Petrology, 1988 (1): 11-37.
|
[14] |
Afonso J C, Ranalli G, Fernàndez M, et al. On the vp/vs-Mg# correlation in mantle peridotites: Implications for the identification of thermal and compositional anomalies in the upper mantle[J]. Earth and Planetary Science Letters, 2010, 289(3/4): 606-618.
|
[15] |
Afonso J C, Schutt D L. The effects of polybaric partial melting on density and seismic velocities of mantle restites[J]. Lithos, 2012, 134: 289-303.
|
[16] |
Herzberg C. Geodynamic information in peridotite petrology[J]. Journal of Petrology, 2004, 45(12): 2507-2530. doi: 10.1093/petrology/egh039
|
[17] |
Afonso J C, Ben-Mansour W, O'Reilly S Y, et al. Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa[J]. Nature Geoscience, 2022, 15(5): 405-410. doi: 10.1038/s41561-022-00929-y
|
[18] |
Stracke A, Bourdon B. The importance of melt extraction for tracing mantle heterogeneity[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 218-238. doi: 10.1016/j.gca.2008.10.015
|
[19] |
Karato S, Jung H. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle[J]. Earth and Planetary Science Letters, 1998, 157(3/4): 193-207.
|
[20] |
Yu Y, Chen Y J. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China: Eastward Tibetan asthenospheric flow around the southern Ordos[J]. Earth and Planetary Science Letters, 2016, 455: 1-6. doi: 10.1016/j.epsl.2016.08.026
|
[21] |
Yu Y, Chen Y J, Feng Y, et al. Asthenospheric flow channel from northeastern Tibet imaged by seismic tomography between Ordos block and Yangtze craton[J]. Geophysical Research Letters, 2021, 48(17): e2021GL093561.
|
[22] |
Bao X, Sun X, Xu M, et al. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth and Planetary Science Letters, 2015, 415: 16-24. doi: 10.1016/j.epsl.2015.01.020
|
[23] |
张智奇, 姚华建, 杨妍. 青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义[J]. 中国科学: 地球科学, 2020, 50(9): 1278-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009007.htm
Zhang Z Q, Yao H J, Yang Y. Shear wave velocity structure of the crust and upper mantle in southeastern Tibet and its geodynamic implications[J]. Science China Earth Sciences, 2020, 63(9): 1278-1293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009007.htm
|
[24] |
He R, Shang X, Yu C, et al. A unified map of Moho depth and Vp/Vs ratio of continental China by receiver function analysis[J]. Geophysical Journal International, 2014, 199(3): 1910-1918. doi: 10.1093/gji/ggu365
|
[25] |
Xu M, Huang Z, Wang L, et al. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB018117.
|
[26] |
Zhao Y, Guo L, Guo Z, et al. High resolution crustal model of SE Tibet from joint inversion of seismic P-wave travel-times and Bouguer gravity anomalies and its implication for the crustal channel flow[J]. Tectonophysics, 2020, 792: 228580. doi: 10.1016/j.tecto.2020.228580
|
[27] |
Bai D, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 2010, 3(5): 358-362. doi: 10.1038/ngeo830
|
[28] |
Li X, Ma X, Chen Y, et al. A plume-modified lithospheric barrier to the southeastward flow of partially molten Tibetan crust inferred from magnetotelluric data[J]. Earth and Planetary Science Letters, 2020, 548: 116493. doi: 10.1016/j.epsl.2020.116493
|
[29] |
单斌, 周万里, 肖阳. 多地球物理观测联合反演华南岩石圈温度和化学组分结构[J]. 中国科学: 地球科学, 2021, 51(1): 120-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101010.htm
Shan B, Zhou W L, Xiao Y. Lithospheric thermal and compositional structure of South China jointly inverted from multiple geophysical observations[J]. Science China Earth Sciences, 2021, 64(1): 148-160(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101010.htm
|
[30] |
Lachenbruch A H, Morgan P. Continental extension, magmatism and elevation; formal relations and rules of thumb[J]. Tectonophysics, 1990, 174(1/2): 39-62.
|
[31] |
谢媛, 李永东, 熊熊. 控制龙门山地区地形的动力学机制[J]. 中国科学: 地球科学, 2020, 50(1): 79-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202001005.htm
Xie Y, Li Y D, Xiong X. Dynamic mechanisms controlling the topography of Longmenshan area[J]. Science China Earth Sciences, 2020, 63(1): 121-131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202001005.htm
|
[32] |
Fullea J, Fernandez M, Zeyen H. FA2BOUG-A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: Application to the Atlantic-Mediterranean transition zone[J]. Computers & Geosciences, 2008, 34(12): 1665-1681.
|
[33] |
Bowin C. Mass anomaly structure of the Earth[J]. Reviews of Geophysics, 2000, 38(3): 355-387. doi: 10.1029/1999RG000064
|
[34] |
Guo Z, Afonso J C, Qashqai M T, et al. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion: Extent and causes of cratonic lithosphere modification[J]. Gondwana Research, 2016, 37: 252-265. doi: 10.1016/j.gr.2016.07.002
|
[35] |
Rawlinson N, Reading A M, Kennett B L N. Lithospheric structure of Tasmania from a novel form of teleseismic tomography[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B02301.
|
[36] |
Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618. doi: 10.1126/science.1108339
|
[37] |
Yang Y, Ritzwoller M H, Lin F C, et al. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: B12310. doi: 10.1029/2008JB005833
|
[38] |
Kind R, Yuan X, Kumar P. Seismic receiver functions and the lithosphere-asthenosphere boundary[J]. Tectonophysics, 2012, 536: 25-43.
|
[39] |
Jones, Alan G. Waves of the future: Superior inferences from collocated seismic and electromagnetic experiments[J]. Tectonophysics, 1998, 286(1/4): 273-298.
|
[40] |
Afonso J C, Fernandez M, Ranalli G, et al. Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05008.
|
[41] |
Afonso J C, Fullea J, Griffin W L, et al. 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. Ⅰ: A priori petrological information and geophysical observables[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2586-2617. doi: 10.1002/jgrb.50124
|
[42] |
Afonso J C, Fullea J, Yang Y, et al. 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. Ⅱ: General methodology and resolution analysis[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1650-1676. doi: 10.1002/jgrb.50123
|
[43] |
Cammarano F, Tackley P, Boschi L. Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: Global thermochemical models[J]. Geophysical Journal International, 2011, 187(3): 1301-1318. doi: 10.1111/j.1365-246X.2011.05223.x
|
[44] |
Khan A, Zunino A, Deschamps F. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5285-5306. doi: 10.1002/jgrb.50304
|
[45] |
王恺, 熊熊, 周宇明, 等. 联合多种资料确定华北岩石圈三维热-流变结构: 对裂陷形成的意义[J]. 中国科学: 地球科学, 2020, 50(7): 946-961. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007006.htm
Wang K, Xiong X, Zhou Y M, et al. Three-dimensional thermo-rheological structure of the lithosphere in the North China Craton determined by integrating multiple observations: Implications for the formation of rifts[J]. Science China Earth Sciences, 2020, 63(7): 969-984(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007006.htm
|
[46] |
Fullea J, Lebedev S, Agius M R, et al. Lithospheric structure in the Baikal-central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation[J]. Geochemistry, Geophysics, Geosystems, 2012, 13: Q0AK09.
|
[47] |
Shan B, Afonso J C, Yang Y, et al. The thermochemical structure of the lithosphere and upper mantle beneath south China: Results from multiobservable probabilistic inversion[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(11): 8417-8441. doi: 10.1002/2014JB011412
|
[48] |
Yang X, Li Y, Afonso J C, et al. Thermochemical state of the upper mantle beneath South China from multi-observable probabilistic inversion[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021114.
|
[49] |
Shan B, Xiong X, Zhao K F, et al. Crustal and upper-mantle structure of South China from Rayleigh wave tomography[J]. Geophysical Journal International, 2017, 208(3): 1643-1654.
|
[50] |
Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008(EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B04406.
|
[51] |
Jiang G, Hu S, Shi Y, et al. Terrestrial heat flow of continental China: Updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753: 36-48. doi: 10.1016/j.tecto.2019.01.006
|
[52] |
Zlotnik S, Afonso J C, Díez P, et al. Small-scale gravitational instabilities under the oceans: Implications for the evolution of oceanic lithosphere and its expression in geophysical observables[J]. Philosophical Magazine, 2008, 88(28/29): 3197-3217.
|
[53] |
Lu J, Zuo Z, Shi Z, et al. Characteristics of Permian volcanism in the western Sichuan Basin and its natural gas exploration potential[J]. Natural Gas Industry B, 2019, 6(5): 444-451. doi: 10.1016/j.ngib.2019.02.002
|
[54] |
Fullea J, Rodríguez-González J, Charco M, et al. Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity gradient and other gravity data modelling: Application to the Atlantic-Mediterranean transition zone[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35: 54-69. doi: 10.1016/j.jag.2014.02.003
|