Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Guo Qinghai, Zhang Xiaobo. Geochemical behavior of rare earth elements in high-temperature hot springs and its indications: A case study in the Daggyai hydrothermal area, Tibet[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 172-180. doi: 10.19509/j.cnki.dzkq.2022.0244
Citation: Guo Qinghai, Zhang Xiaobo. Geochemical behavior of rare earth elements in high-temperature hot springs and its indications: A case study in the Daggyai hydrothermal area, Tibet[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 172-180. doi: 10.19509/j.cnki.dzkq.2022.0244

Geochemical behavior of rare earth elements in high-temperature hot springs and its indications: A case study in the Daggyai hydrothermal area, Tibet

doi: 10.19509/j.cnki.dzkq.2022.0244
  • Received Date: 08 Sep 2022
    Available Online: 10 Nov 2022
  • The Daggyai hydrothermal area (Tibet) is located on the southern margin of the Lhasa-Gangdise terrane and adjacent to the middle of the Indus-Tsangposuture. Acid, neutral, and weakly alkaline hot springs are ubiquitous in Daggyai, offering a peerless opportunity to study the distribution of rare earth elements (REE) in various geothermal waters as well as their geochemical origins. In this study, different types of the Daggyai hot springs were systematically collected to determine their REE concentrations, to discern the REE patterns and to calculate the REE speciation, which is helpful for revealing the indications of the geochemical behavior of REEs in high-temperature geothermal environments. The results of the study show that the REEs in the Daggyai hot springs behaved conservatively, with their concentrations being affected by the sorption of Fe-or Al-rich minerals or amorphous phases instead of sulfate minerals, and the REE patterns and speciation were controlled by the redox conditions and fluid-rock interactions in the reservoirs, capable of reflecting the geological genesis and the general hydrochemical characteristics of the hot springs. Although the major constituent hydrochemistry of the Daggyai hot springs demonstrates that the reservoir host rocks are primarily felsic rocks, the negative Ce anomaly of the neutral-to-alkaline hot springs implies that there are possibly carbonate rocks in the Daggyai reservoirs. This work is a typical example of relevant studies on REE geochemistry in high-temperature hot springs.

     

  • loading
  • [1]
    Munemoto T, Ohmori K, Iwatsuki T. Rare earth elements (REE) in deep groundwater from granite and fracture-filling calcite in the Tono area, central Japan: Prediction of REE fractionation in paleo- to present-day groundwater[J]. Chemical Geology, 2015, 417: 58-67. doi: 10.1016/j.chemgeo.2015.09.024
    [2]
    Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanidetetrad effect[J]. Geochimica et Cosmochimica Acta, 1999, 63: 67-77. doi: 10.1016/S0016-7037(99)00014-9
    [3]
    Sholkovitz E R. Chemical evolution of rare earth elements: Fractionation between colloidal and solution phases of filtered river water[J]. Earth and Planetary Science Letters, 1992, 114: 77-84. doi: 10.1016/0012-821X(92)90152-L
    [4]
    Tweed S O, Weaver T R, Cartwright I, et al. Behavior of rare earth elements in groundwater during flow andmixing in fractured rock aquifers: An example from the Dandenong ranges, Southeast Australia[J]. Chemical Geology, 2006, 234: 291-307. doi: 10.1016/j.chemgeo.2006.05.006
    [5]
    Michard A. Rare earth systematics in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1989, 53: 745-750. doi: 10.1016/0016-7037(89)90017-3
    [6]
    Johannesson K H, Farnham I M, Guo C, et al. Rare earth element fractionation and concentration variations along a groundwater flow path within a shallow, basin-fill aquifer, southern Nevada, USA[J]. Geochimica et Cosmochimica Acta, 1999, 63: 2697-2708. doi: 10.1016/S0016-7037(99)00184-2
    [7]
    Noack C W, Dzombak D A, Karamalidis A K. Rare earth element distributions and trends in natural waters with a focus on groundwater[J]. Environmental Science and Technology, 2014, 48: 4317-4326. doi: 10.1021/es4053895
    [8]
    王雨婷, 李俊霞, 薛肖斌, 等. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同[J]. 地球科学, 2021, 46(1): 308-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101024.htm

    Wang Y T, Li J X, Xue X B, et al. Similarities and differences of main controlling factors of natural high iodine groundwater between North China Plain and Datong Basin[J]. Earth Science, 2021, 46(1): 308-320(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101024.htm
    [9]
    Zhang J, Nozaki Y. Behavior of rare earth elements in seawater at the ocean margin: A study along the slopes of the Sagami and Nankai troughs near Japan[J]. Geochimica et Cosmochimica Acta, 1998, 62: 1307-1317. doi: 10.1016/S0016-7037(98)00073-8
    [10]
    Craddock P R, Bach W, Seewald J S, et al. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of subseafloor hydrothermal processes in back- arc basins[J]. Geochimica et Cosmochimica Acta, 2010, 74: 675-683.
    [11]
    Deluca F, Mongelli G, Paternoster M, et al. Rare earth elements distribution and geochemical behaviour in the volcanic groundwaters of Mount Vulture, southern Italy[J]. Chemical Geology, 2020, 539: 119503. doi: 10.1016/j.chemgeo.2020.119503
    [12]
    Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58: 5105-5113. doi: 10.1016/0016-7037(94)90297-6
    [13]
    Dídac N, Esteve C, Carmen G, et al. REE and Sm-Nd clues of high-temperature fluid-rock interaction in the Riópar dolomitization (SE Spain)[J]. Procedia Earth and Planetary Science, 2017, 17: 448-451. doi: 10.1016/j.proeps.2016.12.113
    [14]
    Wan Y, Wang X, Chou I, et al. Role of sulfate in the transport and enrichment of REE in hydrothermal systems[J]. Earth and Planetary Science Letters, 2021, 569: 117068. doi: 10.1016/j.epsl.2021.117068
    [15]
    Li Z, Zhang S, Zheng Y, et al. Mobilization and fractionation of HFSE and REE by high fluorine fluid of magmatic origin during the alteration of amphibolite[J]. Lithos, 2022, 420/421: 106701. doi: 10.1016/j.lithos.2022.106701
    [16]
    Gob S, Loges A, Nolde N, et al. Major and trace element compositions (including REE) of mineral, thermal, mine and surface waters in SW Germany and implications for water-rock interaction[J]. Applied Geochemistry, 2013, 33: 127-152. doi: 10.1016/j.apgeochem.2013.02.006
    [17]
    Oliveri Y, Cangemi M, Capasso G, et al. Pathways and fate of REE in the shallow hydrothermal aquifer of Vulcano Island (Italy)[J]. Chemical Geology, 2019, 512: 121-129. doi: 10.1016/j.chemgeo.2019.02.037
    [18]
    Bai D, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 2010, 3: 358-362. doi: 10.1038/ngeo830
    [19]
    王鹏. 藏南碰撞造山带典型水热区现代地球化学过程与小流域CO2源、汇关系研究[D]. 重庆: 西南大学, 2013.

    Wang P. Study on modern geochemical processes and CO2 source and sink relationship of small watershed of typical hydrothermal area in southern Tibet collision orogenic belt[D]. Chongqing: Southwest University, 2013(in Chinese with English abstract).
    [20]
    Hoke L, Lamb S, Hilton D R, et al. Southern limit of mantle-derived geothermal helium emissions in Tibet: Implications for lithospheric structure[J]. Earth Planet Science Letter., 2000, 180(3): 297-308.
    [21]
    Liu M, Guo Q, Wu G, et al. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in southern Tibet (China): Daggyai and Quzhuomu[J]. Geothermics, 2019, 82: 190-202. doi: 10.1016/j.geothermics.2019.06.009
    [22]
    Giggenbach W. Geothermal solute equilibria: Derivation of Na-K-Mg-Ca geoindicators[J]. Geochemica et Cosmochimica Acta, 1988, 52, 2749-2765. doi: 10.1016/0016-7037(88)90143-3
    [23]
    Santos-Raga G, Santoyo E, Guevara M, et al. Tracking geochemical signatures of rare earth and trace elements in spring waters and outcropping rocks from the hidden geothermal system of Acoculco, Puebla (Mexico)[J]. Journal of Geochemical Exploration, 2021, 227: 106798. doi: 10.1016/j.gexplo.2021.106798
    [24]
    Shakeri A, Ghoreyshinia S, Mehrabi B, et al. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran[J]. Journal of Volcanology & Geothermal Research, 2015, 304: 49-61.
    [25]
    赵振华, 王一先, 钱志鑫, 等. 西藏南部花岗岩类稀土元素地球化学[J]. 地球化学, 1981, 10(1): 26-35. doi: 10.3321/j.issn:0379-1726.1981.01.004

    Zhao Z H, Wang Y X, Qian Z X, et al. REE geochemistry of granitoids in southen Tibet[J]. Geochimica, 1981, 10(1): 26-35(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1981.01.004
    [26]
    Smedley P L. The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England[J]. Geochimica et Cosmochimica Acta, 1991, 55: 2767-2779. doi: 10.1016/0016-7037(91)90443-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(241) PDF Downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return