Volume 42 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Huang Peng, Zhou Aiguo, Ma Chuanming, Liu Zuo, Zhang Zechen, Bai Yaonan. Water sources of typical plants during the rainy season in desertification areas of the agro-pastoral ecotone in northern China[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 336-346. doi: 10.19509/j.cnki.dzkq.tb20210474
Citation: Huang Peng, Zhou Aiguo, Ma Chuanming, Liu Zuo, Zhang Zechen, Bai Yaonan. Water sources of typical plants during the rainy season in desertification areas of the agro-pastoral ecotone in northern China[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 336-346. doi: 10.19509/j.cnki.dzkq.tb20210474

Water sources of typical plants during the rainy season in desertification areas of the agro-pastoral ecotone in northern China

doi: 10.19509/j.cnki.dzkq.tb20210474
  • Received Date: 02 Aug 2021
  • The agro-pastoral ecotone in northern China is an important ecological security barrier for central and eastern China. Ecological restoration in this zone is very important due to its fragile ecosystem structure, frequent ecological and environmental problems, and severe land desertification. The plant-soil water relationship is essential to ecological and hydrological processes in land desertification areas. Studying the water conversion process between plants and soil is of great importance for understanding the water absorption patterns of plants and determining the preferred plant species for ecological restoration. Taking northern Kangbao County, Zhangjiakou City, Hebei Province as the study area, this study analyzed the water uptake layer, ecological niche width, and water competition of typical plants based on the hydrogen and oxygen isotopic characteristics of rainfall, groundwater, soil water, and xylem water during the rainy season, were analyzed. The results showed that Caragana korshinskii mainly absorbed soil water at a depth of 80-100 cm, with a maximum water uptake rate of 87.7%, while Brassica campestris mainly absorbed soil water at a depth of 0-20 cm, with a maximum water uptake rate of 82.3%. The water absorption layer of Stipa baicalensis was related to the soil moisture content, and the depth of water absorption of Neopallasia pectinata was more balanced. The ecological niche of each plant species is relatively wide, but there is intense water competition among some plants. This study provides a scientific basis for identifying plant water sources and ecological restoration in desertification areas of the agro-pastoral ecotone in northern China.

     

  • loading
  • [1]
    边俊景, 孙自永, 周爱国, 等. 干旱区植物水分来源的D、18O同位素示踪研究进展[J]. 地质科技情报, 2009, 28(4): 117-120. doi: 10.3969/j.issn.1000-7849.2009.04.021

    Bian J J, Sun Z Y, Zhou A G, et al. Advances in the D and 18O isotope of water source of plants in arid areas[J]. Geological Science and Technology Information, 2009, 28(4): 117-120(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2009.04.021
    [2]
    Wang Y G, Li Y, Xiao D N. Catchment scale spatial variability of soil salt content in agricultural oasis, Northwest China[J]. Envrionmental Geology, 2008, 56(2): 439-446.
    [3]
    Huang Y, Wang Y D, Zhao Y, et al. Spatiotemporal distribution of soil moisture and salinity in the Taklimakan Desert highway shelterbelt[J]. Water, 2015, 7(8): 4343-4361.
    [4]
    Fan H X, Xu L G, Wang X L, et al. Relationship between vegetation community distribution patterns and environmental factors in typical wetlands of Poyang Lake, China[J]. Wetlands, 2019, 39(S1): 75-87. doi: 10.1007/s13157-017-0903-7
    [5]
    Cui Y Q, Niu L Q, Xiang J L, et al. Water uptake from different soil depths for desert plants in saline lands of Dunhuang, NW China[J]. Frontiers in Environmental Science, 2021, 8: 585464. doi: 10.3389/fenvs.2020.585464
    [6]
    Pan Y X, Wang X P, Ma X Z, et al. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China[J]. Catena, 2020, 189: 104499. doi: 10.1016/j.catena.2020.104499
    [7]
    Zhang R, Wang D, Yang Z Q, et al. Changes in rainfall partitioning and its effect on soil water replenishment after the conversion of croplands into apple orchards on the Loess Plateau[J]. Agriculture Ecosystems & Environment, 2021, 312: 107342.
    [8]
    刘保清, 刘志民, 钱建强, 等. 科尔沁沙地南缘主要固沙植物旱季水分来源[J]. 应用生态学报, 2017, 28(7): 2093-2101. doi: 10.13287/j.1001-9332.201707.030

    Liu B Q, Liu Z M, Qian J Q, et al. Water sources of dominant sand-bindong plants in dry season in southern Horqin Sandy Land, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2093-2101(in Chinese with English abstract). doi: 10.13287/j.1001-9332.201707.030
    [9]
    Yang L, Wei W, Chen L D, et al. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China[J]. Catena, 2014, 115: 123-133. doi: 10.1016/j.catena.2013.12.005
    [10]
    Priyadarshini K V R, Prins H H T, de Bie S, et al. Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions[J]. Ecohydrology, 2016, 9(2): 218-228. doi: 10.1002/eco.1624
    [11]
    吕婷. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[D]. 陕西咸阳: 西北农林科技大学, 2017.

    Lü T. Soil water use strategy of dominant species in typical natural and planted shrubs in loess hilly region[D]. Xianyang Shaanxi: Northwest A & F University, 2017(in Chinese with English abstract).
    [12]
    Rossatto D R, Sternberg L D L, Franco A C. The partitioning of water uptake between growth forms in a Neotropical savanna: Do herbs exploit a third water source niche?[J]. Plant Biology, 2013, 15(1): 84-92. doi: 10.1111/j.1438-8677.2012.00618.x
    [13]
    Geissler K, Heblack J, Uugulu S, et al. Partitioning of water between differently sized shrubs and potential groundwater recharge in a semiarid savanna in Namibia[J]. Frontiers in Plant Science, 2019, 10: 1411. doi: 10.3389/fpls.2019.01411
    [14]
    Churakova-Sidorova O V, Lienert S, Timofeeva G, et al. Measured and modelled source water delta O-18 based on tree-ring cellulose of larch and pine trees from the permafrost zone[J]. Iforest-Biogeosciences and Forestry, 2020, 13: 224-229. doi: 10.3832/ifor3212-013
    [15]
    Zhu Y J, Wang G J, Xin Z M, et al. Water use strategy of Ammopiptanthus mongolicus community in a drought year on the Mongolian Plateau[J]. Journal of Plant Ecology, 2020, 13(6): 793-800. doi: 10.1093/jpe/rtaa064
    [16]
    Liu J Z, Wu H W, Cheng Y, et al. Stable isotope analysis of soil and plant water in a pair of natural grassland and understory of planted forestland on the Chinese Loess Plateau[J]. Agricultural Water Management, 2021, 249: 106800. doi: 10.1016/j.agwat.2021.106800
    [17]
    Ding Y L, Nie Y P, Chen H S, et al. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation[J]. New Phytologis, 2021, 229(3): 1339-1353. doi: 10.1111/nph.16971
    [18]
    Chen Z X, Wang G H, Pan Y H, et al. Water use patterns differed notably with season and slope aspect for Caragana korshinskii on the Loess Plateau of China[J]. Catena, 2021, 198: 1050258.
    [19]
    Zeng X M, Xu X L, Yi R Z, et al. Sap flow and plant water sources for typical vegetation in a subtropical humid karst area of Southwest China[J]. Hydrological Processes, 2021, 35(3): e14090.
    [20]
    聂云鹏, 陈洪松, 王克林. 土层浅薄地区植物水分来源研究方法[J]. 应用生态学报, 2010, 21(9): 2427-2433. doi: 10.13287/j.1001-9332.2010.0320

    Nie Y P, Chen H S, Wang K L. Methods for determining plant water source in thin soil region: A review[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2427-2433(in Chinese with English abstract). doi: 10.13287/j.1001-9332.2010.0320
    [21]
    Ehleringer J R, Dawson T E. Water-uptake by plants-perspectives from stable isotope composition[J]. Plant Cell and Environment, 1992, 15(9): 1073-1082. doi: 10.1111/j.1365-3040.1992.tb01657.x
    [22]
    邓文平, 余新晓, 贾国栋, 等. 雨季北京山区3种典型植物的水分来源[J]. 干旱区研究, 2014, 31(4): 649-657. doi: 10.13866/j.azr.2014.04.10

    Deng W P, Yu X X, Jia G D, et al. Water sources of three typical plants in the Beijing mountain areas in rainy season[J]. Arid Zone Research, 2014, 31(4): 649-657(in Chinese with English abstract). doi: 10.13866/j.azr.2014.04.10
    [23]
    聂云鹏, 陈洪松, 王克林, 等. 采用稳定同位素技术判定喀斯特地区植物水分来源的挑战与可能应对方案[J]. 应用生态学报, 2017, 28(7): 2361-2368. doi: 10.13287/j.1001-9332.201707.017

    Nie Y P, Chen H S, Wang K L, et al. Challenges and probable solutions for using stable isotope techniques to identify plant water sources in karst regions: A review[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2361-2368(in Chinese with English abstract). doi: 10.13287/j.1001-9332.201707.017
    [24]
    曾巧, 马剑英. 黑河流域不同生境植物水分来源及环境指示意义[J]. 冰川冻土, 2013, 35(1): 148-155. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301018.htm

    Zeng Q, Ma J Y. Plant water sources of different habitats and its environmental indication in Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 148-155(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301018.htm
    [25]
    李盼根, 王震洪, 李赫, 等. 基于稳定氢氧同位素的黄土高原不同生长年限油用牡丹水分来源研究[J]. 水土保持通报, 2020, 40(1): 108-115. doi: 10.13961/j.cnki.stbctb.2020.01.016

    Li P G, Wang Z H, Li H, et al. Analysis on sources of soil water absorbed by oil peonies of different ages based on stable isotopes of hydrogen and oxygen found on Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2020, 40(1): 108-115(in Chinese with English abstract). doi: 10.13961/j.cnki.stbctb.2020.01.016
    [26]
    孙自永, 王俊友, 葛孟琰, 等. 基于水稳定同位素的地下水型陆地植被识别: 研究进展、面临挑战及未来研究展望[J]. 地质科技通报, 2020, 39(1): 11-20. doi: 10.19509/j.cnki.dzkq.2020.0102

    Sun Z Y, Wang J Y, Ge M Y, et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation: Progress, challenges, and prospects for future research[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 11-20(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0102
    [27]
    刘冰. 基于稳定性同位素技术荒漠植物红砂水分来源的研究[D]. 呼和浩特: 内蒙古农业大学, 2017.

    Liu B. Research on water source of Reaumuria soongorica based on the stable isotope technique[D]. Hohhot: Inner Mongolia Agricultural University, 2017(in Chinese with English abstract).
    [28]
    Phillips D L, Inger R, Bearhop S, et al. Best practices for use of stable isotope mixing models in food-web studies[J]. Canadian Journal of Zoology, 2014, 92(10): 823-835. doi: 10.1139/cjz-2014-0127
    [29]
    Phillips D L, Gregg J W. Source partitioning using stable isotopes: Coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269. doi: 10.1007/s00442-003-1218-3
    [30]
    赵春, 张勇勇, 赵文智, 等. 稳定同位素在干旱区水分传输过程的研究进展[J]. 生态科学, 2020, 39(5): 256-264. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX202005031.htm

    Zhao C, Zhang Y Y, Zhao W Z, et al. Application of stable isotopes on water exchange in the arid region: A review[J]. Ecological Science, 2020, 39(5): 256-264(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STKX202005031.htm
    [31]
    黄晓宇. 基于稳定同位素技术的宁夏河东沙地柠条水分利用策略研究[D]. 银川: 宁夏大学, 2020.

    Huang X Y. Study on water use strategies of Caragana korshinskii in Ningxia Hedong sandy land based on stable isotope technology[D]. Yinchuan: Ningxia University, 2020(in Chinese with English abstract).
    [32]
    Zhao L, Li W J, Yang G, et al. Moisture, temperature, and salinity of a typical desert plant (Haloxylon ammodendron) in an arid oasis of Northwest China[J]. Sustainability, 2021, 13(4): 1908. doi: 10.3390/su13041908
    [33]
    牛家昱. 旱地冬小麦品种更替过程中根系吸水能力的变化及其机制[D]. 陕西咸阳: 西北农林科技大学, 2021.

    Niu J Y. Change of water uptake by roots and its mechanism during the replacement process of dry-land winter wheat[D]. Xianyang Shaanxi: Northwest A & F University, 2021(in Chinese with English abstract).
    [34]
    李会杰. 黄土高原林地深层土壤根系吸水过程及其对水分胁迫和土壤碳输入的影响[D]. 陕西咸阳: 西北农林科技大学, 2019.

    Li H J. Root water uptake process in deep soil for forest growing on the loess plateau and its effect on water stress and soil carbon input[D]. Xianyang Shaanxi: Northwest A & F University, 2019(in Chinese with English abstract).
    [35]
    古力米热·哈那提, 王光焰, 张音, 等. 干旱区间歇性生态输水对地下水位与植被的影响机理研究[J]. 干旱区地理, 2018, 41(4): 726-733. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201804007.htm

    Hanati G, Wang G Y, Zhang Y, et al. Influence mechanism of intermittent ecological water conveyance on groundwater level and vegetation in arid land[J]. Arid Land Geography, 2018, 41(4): 726-733(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201804007.htm
    [36]
    Huo G P, Zhao X N, Gao X D, et al. Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid plantations in China[J]. Agriculture Ecosystem & Environment, 2018, 265: 392-401.
    [37]
    Huang X T, Luo G P, Lü N N, et al. Spatio-temporal patterns of grassland evapotranspiration and water use efficiency in arid areas[J]. Ecological Research, 2017, 32(4): 523-535. doi: 10.1007/s11284-017-1463-2
    [38]
    Nippert J B, Butler J J. Kluitenberg G J, et al. Patterns of Tamarix water use during a record drought[J]. Oecologia, 2010, 162(2): 283-292. doi: 10.1007/s00442-009-1455-1
    [39]
    农业部. 农业部关于北方农牧交错带农业结构调整的指导意见[EB/OL]. http://www.moa.gov.cn/nybgb/2016/shierqi/201711/t20171125_5919525.htm,2017-11-25/2021-5-5.

    Ministry of Agriculture and Rural Affairs. Opinions about adjustment of agricultural structure of the farming-pasture zone in North China[EB/OL]. http://www.moa.gov.cn/nybgb/2016/shierqi/201711/t20171125_5919525.htm,2017-11-25/2021-5-5(in Chinese).
    [40]
    裴宏伟, 王飞枭, 张红娟. 中国北方农牧交错带水资源问题荟萃分析[J]. 河北建筑工程学院学报, 2020, 38(4): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HBJZ202004016.htm

    Pei H W, Wang F X, Zhang H J. Review on water resources evolution of farming-pastoral ecotone in North China[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2020, 38(4): 83-90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBJZ202004016.htm
    [41]
    卢远, 华璀, 王娟. 东北农牧交错带典型区土地利用变化及其生态效应[J]. 中国人口·资源与环境, 2006, 16(2): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ200602012.htm

    Lu Y, Hua C, Wang J. Land use change and its ecologic effect in typical region of the farming-pasture zone in northeastern China[J]. China Population·Resources and Environment, 2006, 16(2): 58-62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ200602012.htm
    [42]
    Xiang D, Verbruggen E, Hu Y J, et al. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China[J], New Phytologist, 2014, 204(4): 968-978.
    [43]
    徐露, 张丹, 向宇国, 等. 季节性干旱区紫色土坡耕地土壤水分对降雨的响应[J]. 水土保持学报, 2020, 34(6): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202006006.htm

    Xu L, Zhang D, Xiang Y G, et al. Response of soil moisture to rainfall in sloping farmland with purple soil in the seasonal arid area[J]. Journal of Soil and Water Conservation, 2020, 34(6): 37-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202006006.htm
    [44]
    刘孟竹, 张红娟, 王彦芳, 等. 基于土地利用的北方农牧交错带生境质量研究[J]. 水土保持研究, 2021, 28(3): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202103023.htm

    Liu M Z, Zhang H J, Wang Y F, et al. Characteristics of habitat quality in the agro-pastoral ecotone of northern China based on land use[J]. Research of Soil and Water Conservation, 2021, 28(3): 156-162(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202103023.htm
    [45]
    苑依笑. 坝上地区风蚀对农田土壤理化性质的影响: 以康保县为例[D]. 石家庄: 河北师范大学, 2018.

    Yuan Y X. Influence of wind erosion on physicochemical properties of farmland soil in Bashang District: A case study on Kangbao County[D]. Shijiazhuang: Hebei Normal University, 2018(in Chinese with English abstract).
    [46]
    董大鹏, 徐青, 马佳明, 等. 康保县土地沙漠化动态监测研究[J]. 林业与生态科学, 2020, 35(2): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLY202002005.htm

    Dong D P, Xu Q, Ma J M, et al. Research on dynamic monitoring of land desertification in Kangbao County[J]. Forestry and Ecological Sciences, 2020, 35(2): 157-163(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBLY202002005.htm
    [47]
    白耀楠, 刘宏伟, 马震, 等. 康保县北部土地沙化特征及其地质影响因素[J]. 地质调查与研究, 2020, 43(3): 212-217. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202003002.htm

    Bai Y N, Liu H W, Ma Z, et al. Characteristics of land desertification and its geological influencing factors in northern Kangbao County[J]. Geological Survey and Research, 2020, 43(3): 212-217(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202003002.htm
    [48]
    李晓敏. 河北省康保县浅层土壤地球化学特征及其环境地质意义[D]. 石家庄: 河北地质大学, 2017.

    Li X M. Shallow soil geochemical characteristics and environment geological significance of Kangbao in Hebei[D]. Shijiazhuang: Hebei GEO University, 2017(in Chinese with English abstract).
    [49]
    吴云霞, 蔡奎, 吕凤军, 等. 冀西北农牧交错带表层土壤营养元素特征研究: 以河北省康保县为例[J]. 干旱区资源与环境, 2019, 33(1): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201901013.htm

    Wu Y X, Cai K, Lü F J, et al. Characteristics of nutrition elements in ecotone of agriculture animal husbandry in KangbaoCounty, Hebei Province[J]. Journal of Arid Land Resources and Environment, 2019, 33(1): 84-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201901013.htm
    [50]
    陈松, 孙华, 陈振雄, 等. 基于混合像元分解方法的康保县植被覆盖度估测[J]. 中南林业调查规划, 2019, 38(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDF201901010.htm

    Chen S, Sun H, Chen Z X, et al. Estimation of vegetation coverage of Kangbao County based on spectral unmixing analysis methods[J]. Central South Forest and Planning, 2019, 38(1): 39-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDF201901010.htm
    [51]
    董佳慧, 陈涛, 王西平. 康保县1987-2016年植被覆盖度动态变化分析[J]. 地理空间信息, 2020, 18(2): 99-102, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ202002028.htm

    Dong J H, Chen T, Wang X P. Dynamic change analysis of vegetation coverage in Kangbao County from 1987 to 2016[J]. Geospatial Information, 2020, 18(2): 99-102, 8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ202002028.htm
    [52]
    Shi Y, Jia W X, Zhu G F, et al. Hydrogen and oxygen isotope characteristics of water and the recharge sources in subalpine of Qilian Mountains, China[J]. Polish Journal of Environmental Studies, 2021, 30(3): 2325-2339.
    [53]
    马斌, 梁杏, 林丹, 等. 应用2H、18O同位素示踪华北平原石家庄包气带土壤水入渗补给及年补给量确定[J]. 地质科技情报, 2014, 33(3): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htm

    Ma B, Liang X, Lin D. Application of continuous wavelet transform to correct barometric and tidal response in the water table[J]. Geological Science and Technology Information, 2014, 33(3): 163-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htm
    [54]
    傅思华, 胡顺军, 李浩, 等. 古尔班通古特沙漠南缘梭梭(Haloxylon ammodendron)群落优势植物水分来源[J]. 中国沙漠, 2018, 38(5): 1024-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201805015.htm

    Fu S H, Hu S J, Li H. et al. Water sources of dominant plants in Haloxylon ammodendron community at the southern edge of Gurbantunggut Desert[J]. Journal of Desert Research, 2018, 38(5): 1024-1032(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201805015.htm
    [55]
    郭少峰, 贾德彬, 王蓉, 等. 内蒙古正蓝旗大气降水氢氧稳定同位素特征分析[J]. 中国科技论文, 2015, 10(21): 2580-2584. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201521022.htm

    Guo S F, Jia D B, Wang R, et al. Analysis of precipitation characteristics of hydrogen and oxygen stable isotope in Zhenglanqi area of Inner Mongolia[J]. China Science Paper, 2015, 10(21): 2580-2584(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201521022.htm
    [56]
    苏鹏燕. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源研究[D]. 兰州: 西北师范大学, 2021.

    Su P Y. Research on water sources of riparian plants based on stable hydrogen and oxygen isotopes in Lanzhou section of the Yellow River, China[D]. Lanzhou: Northwest Normal University, 2021(in Chinese with English abstract).
    [57]
    Moreno-Gutierrez C, Dawson T E, Nicolas E, et al. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem[J]. New Phytologist, 2012, 196(2): 489-496.
    [58]
    Tang K L, Feng X H, The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants' source water[J]. Earth and Planetary Science Letters, 2001, 185(3/4): 355-367.
    [59]
    Levins R, Evolution in changing environments[M]. Princeton: Princeton University Press, 1968.
    [60]
    Pannek A, Manthey M, Diemann M. Comparing resource-based and co-occurrence-based methods for estimating species niche breadth[J]. Journal of Vegetation Science, 2016, 27(3): 596-605.
    [61]
    Granot I, Shenkar N, Belmaker J. Habitat niche breadth predicts invasiveness in solitary ascidians[J]. Ecology and Evolution, 2017, 7(19): 7838-7847.
    [62]
    Yang B, Wen X F, Sun X M, et al. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region[J]. Agricultural and Forest Meteorology, 2015, 201: 218-228.
    [63]
    West A G, Dawson T E, February E C, et al. Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa[J]. New Phytologist, 2012, 195(2): 396-407.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(451) PDF Downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return