Volume 42 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Shi Xushan, Kang Hongyuan, Pan Huanying, Chai Bo. Experimental study on the effect of ion exchange on solute transport in a sandy tank[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 162-169. doi: 10.19509/j.cnki.dzkq.tb20210697
Citation: Shi Xushan, Kang Hongyuan, Pan Huanying, Chai Bo. Experimental study on the effect of ion exchange on solute transport in a sandy tank[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 162-169. doi: 10.19509/j.cnki.dzkq.tb20210697

Experimental study on the effect of ion exchange on solute transport in a sandy tank

doi: 10.19509/j.cnki.dzkq.tb20210697
  • Received Date: 08 Nov 2021
  • Accepted Date: 30 Jan 2023
  • Rev Recd Date: 29 Apr 2022
  • Objective

    To study the transport of pollutants in typical hydraulic sedimentary units such as river terraces or alluvial fans, solute transport experiments were carried out in an indoor seepage tank.

    Methods

    NaNO3 solution were introduced into the tank to simulate the point-pollution in hydraulic sediments. By measuring the concentration of the main ion components at different positions over time, the migration law of pollutants and the ion exchange process are analysed.

    Results

    The results show that NO32- is a conservative ion, and its breakthrough curve (BTC) is sharp and thin. The transport behaviour of Na+ is significantly affected by cation exchange, its concentration rising sharply and decreasing slowly. Cation exchange reduces the dispersion of Na+, and the effect becomes more obvious as the distance increases. In the early stage, the high concentration of Na+ can exchange Ca2+, Mg2+, and K+ in the sand layer. Cation exchange reduces the Na+ dispersion concentration. Due to the adsorption by sediment, the concentrations of Ca2+, Mg2+, and K+ will be lower in the later stage. The change in the reaction direction of cation exchange makes the BTCs of Na+ wider and gentler under the action of advective dispersion, and the phenomenon of "tailing" is more obvious. The water chemistry types in different areas in the seepage sank have different properties in space.

    Conclusion

    The research results have guiding significance for preventing and controlling groundwater pollution in hydraulic sedimentary units.

     

  • loading
  • [1]
    Ramos T B, Šimuonek J, Gonçalves M C, et al. Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters[J]. Journal of Hydrology, 2011, 407(1): 129-144.
    [2]
    Zhou J, Su X, Liang C, et al. Experimental and numerical investigations of the effect of imbricated gravel structures on flow and solute transport in a highly heterogeneous alluvial-proluvial fan aquifer, SW China[J]. Environmental Fluid Mechanics, 2021, 21(1): 11-38. doi: 10.1007/s10652-020-09760-8
    [3]
    Swami D, Sharma A, Sharma P K, et al. Predicting suitability of different scale-dependent dispersivities for reactive solute transport through stratified porous media[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(6): 921-927. doi: 10.1016/j.jrmge.2016.07.005
    [4]
    胡海珠, 毛晓敏, 王铄. 多组分离子交换吸附反应-运移的土柱试验及模拟[J]. 水文地质工程地质, 2010, 37(4): 81-86. doi: 10.3969/j.issn.1000-3665.2010.04.017

    Hu H Z, Mao X M, Wang S. Column experiment and simulation on muti-species cation exchange reactive transport[J]. Hydrogeology & Engineering Geology, 2010, 37(4): 81-86(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2010.04.017
    [5]
    牛宏, 魏小雅, 林晶晶, 等. 盆地多级次地下水流系统盐分运移实验模拟[J]. 地质科技通报, 2022, 41(1): 177-182. doi: 10.19509/j.cnki.dzkq.2022.0019

    Niu H, Wei X Y, Lin J J, et al. Experimental simulation of salt transport in hierarchically nested groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 177-182(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0019
    [6]
    付宏渊, 严志伟, 李海. 土柱溶质运移试验的理论验证及影响因素敏感性分析[J]. 长沙理工大学学报: 自然科学版, 2011, 8(4): 1-5, 11. doi: 10.3969/j.issn.1672-9331.2011.04.001

    Fu H Y, Yan Z W, Li H. Verification and factor analysis on solute transportation in soil column test by 1D finite element method[J]. Journal of Changsha University of Science and Technology: Natural Science Edition, 2011, 8(4): 1-5, 11(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9331.2011.04.001
    [7]
    Beegum S, Šimuonek J, Szymkiewicz A, et al. Implementation of solute transport in the Vadose Zone into the "HYDRUS Package for MODFLOW"[J]. Groundwater, 2019, 57(3): 392-408. doi: 10.1111/gwat.12815
    [8]
    Martinez F S J, Pachepsky Y A, Rawls W J. Modelling solute transport in soil columns using advective-dispersive equations with fractional spatial derivatives[J]. Advances in Engineering Software, 2010, 41(1): 4-8. doi: 10.1016/j.advengsoft.2008.12.015
    [9]
    季怀松, 罗明明, 褚学伟, 等. 岩溶洼地内涝蓄水量与不同级次裂隙对溶质迁移影响的室内实验与模拟[J]. 地质科技通报, 2020, 39(5): 164-172. doi: 10.19509/j.cnki.dzkq.2020.0520

    Ji H S, Luo M M, Chu X W, et al. Laboratory experiment and simulation of solute transport affected by different grades of fissures and water storge of water logging in karst depression[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 164-172(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0520
    [10]
    覃荣高, 曹广祝, 仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014, 29(1): 30-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201401004.htm

    Qin R G, Cao G Z, Wu Y Q. Review of the study of groundwater flow and solute transport in heterogeneous aquifer[J]. Advances in Earth Science, 2014, 29(1): 30-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201401004.htm
    [11]
    郭清海, 王焰新. 典型新生代断陷盆地内孔隙地下水地球化学过程及其模拟: 以山西太原盆地为例[J]. 地学前缘, 2014, 21(4): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404012.htm

    Guo Q H, Wang Y X. Simulation of geochemical processes affecting groundwater in Quaternary porous aquifers of Taiyuan Basin: A typical Cenozoic rift basin[J]. Earth Science Fronties, 2014, 21(4): 83-90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404012.htm
    [12]
    Prelot B, Ayed I, Marchandeau F, et al. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: The case of heavy metal pollution[J]. Environmental Science and Pollution Research, 2014, 21(15): 9334-9343. doi: 10.1007/s11356-014-2862-3
    [13]
    任加国, 武倩倩. 咸淡水过渡带的多组分离子交换行为研究[J]. 中国地质, 2010, 37(2): 530-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002029.htm

    Ren J G, Wu Q Q. Multi-component ion exchange and transport in the seawater-fresh water transitional zone[J]. Geology in China, 2010, 37(2): 530-535(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002029.htm
    [14]
    Miao Q Z, Zhou X N, Wang G L, et al. Research on changes of hydrodynamics and ion-exchange adsorption in brackish-water interface[J]. Journal of Groundwater Science and Engineering, 2019, 7(2): 94-105.
    [15]
    Xie X, Pu L, Zhu M, et al. Linkage between soil salinization indicators and physicochemical properties in a long-term intensive agricultural coastal reclamation area, eastern China[J]. Journal of Soils and Sediments, 2019, 19(11): 3699-3707.
    [16]
    Ishiguro M, Koopal L K. Surfactant adsorption to soil components and soils[J]. Advances in Colloid and Interface Science, 2016, 231: 59-102.
    [17]
    Mande S L A S, Liu M Z, Tchakala I, et al. Water-rock interaction effect on evolution of total hardness in groundwater in urban[J]. American Journal of Water Resources, 2018, 6(2): 48-52.
    [18]
    Karnland O, Birgersson M, Hedström M. Selectivity coefficient for Ca/Na ion exchange in highly compacted bentonite[J]. Physics and Chemistry of the Earth, 2011, 32: 1554-1558.
    [19]
    Bradford S A, Kim H. Implications of cation exchange on clay release and colloid-facilitated transport in porous media[J]. Journal of Environmental Quality, 2010, 39(6): 2040-2046.
    [20]
    Borrok D M, Broussard W P. Long-term geochemical evaluation of the coastal Chicot aquifer system, Louisiana, USA[J]. Journal of Hydrology, 2016, 533: 320-331.
    [21]
    Ceazan M L, Thurman E M, Smith R L. Retardation of ammonium and potassium-transport through a contaminated sand and gravel aquifer: The role of cation-exchange[J]. Environmental Science & Technology, 1989, 23(11): 1402-1408.
    [22]
    杨会林. 氯化钠在地下水中迁移的室内实验研究[D]. 北京: 中国地质大学(北京), 2013.

    Yang H L. Laboratory experiments research for NaCl transportation in the groundwater[D]. Beijing: China University of Geosciences(Beijing), 2013(in Chinese with English abstract).
    [23]
    赵元艺, 王晓亮, 赵希涛, 等. 赣东北乐安江德兴铜矿段河流阶地的发育及环境意义[J]. 地球学报, 2014, 35(4): 454-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404009.htm

    Zhao Y Y, Wang X L, Zhao X T, et al. Terraces development of the Le'an River in the Dexing Copper Mine of Northeast Jiangxi and its envirmental significance[J]. Acta Geoscientica Sinica, 2014, 35(4): 454-462(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404009.htm
    [24]
    江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511
    [25]
    潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312

    Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312
    [26]
    Wood W W. Geogenic groundwater solutes: The myth[J]. Hydrogeology Journal, 2019, 27(8): 2729-2738.
    [27]
    Talabi A O, Kayode T J. Groundwater pollution and remediation[J]. Journal of Water Resource and Protection, 2019, 11(1): 1-19.
    [28]
    陈崇希, 李国敏. 地下水溶质运移理论及模型[M]. 武汉: 武汉地质学院出版社, 1996.

    Chen C X, Li G M. Groundwater solute transport theory and model[M]. Wuhan: Wuhan College of Geology Press, 1996(in Chinese).
    [29]
    秦鹏一, 徐先锋, 蔡五田, 等. 河南安阳冲洪积扇含水层水化学分布特征及成因分析[J]. 水文, 2020, 40(6): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ202006016.htm

    Qin P Y, Xu X F, Cai W T, et al. Analysis on aquifers hydrochemical distribution characteristics and genesis of the alluvial fan in Anyang, Henan Province[J]. Journal of China Hydrology, 2020, 40(6): 89-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ202006016.htm
    [30]
    张人权, 梁杏, 靳孟贵, 等. 水文地质学基础: 第7版[M]. 北京: 地质出版社, 2018.

    Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology: 7th Edition[M]. Beijing: Geological Publishing House, 2018(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(393) PDF Downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return