Citation: | Li Zewei, Yuan Fei, Li Minglong, Zhao Jun, Wan Kai, Li Guangshun. Indicative significance of hydrochemical characteristics in geothermal resource investigations in the Enshi Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 83-94. doi: 10.19509/j.cnki.dzkq.tb20210791 |
Geothermal resources are valuable clean resources, and the Enshi Basin contains abundant geothermal resources. It is very important to expore the origin of geothermal resources.
Starting from the chemical and isotopic characteristics of geothermal water, combined with the hydrological and geothermal geological conditions of the Enshi Basin, the following works have been performed. The geochemical characteristics and main ion recharge sources of geothermal water in the Enshi Basin are discussed and analyzed by the Piper diagram method and main ion correlation analysis method. In this study, the appropriate silica temperature scale method is used to solve the problem that it is difficult to accurately measure the heat storage temperature. Using hydrogen and oxygen isotope testing technology, the recharge source, circulation depth and recharge elevation of geothermal water are determined.
Results show that the hydrochemical type of geothermal water in the Enshi Basin is mainly SO4·Cl-Na water, and the main ions in the groundwater are SO42-, Cl- and Na+. There is a good positive correlation between TDS in geothermal water and Na+, Ca2+, Mg2+, Cl- and SO42-, while TDS in geothermal water is much higher than that in cold springs.It is due to the large burial depth, long runoff path and strong dissolution leaching action, which makes it easier to extract relevant ions from the surrounding rock and results in ion concentrations much higher than those of surface water. The hot water in the study area is mainly supplied by atmospheric precipitation, and the 14C and 34S isotopic characteristics of geothermal water show that the storage environment of geothermal water from the edge of the basin to the center of the basin is gradually closed, the retention time of geothermal water is gradually longer, and the degree of water rock reaction is gradually stronger. The results of the water-rock balance show that the concentration of SiO2 in hot water is controlled by the dissolution balance of quartz.Using the SiO2 geothermal temperature scale, the estimated thermal storage temperature is 55.74-58.24 ℃, the burial depth of thermal storage is 1 793-1 906 m, and the circulating depth of hot water is 1 823-1 936 m. The recharge elevation of geothermal water is estimated to be 1 022.64-1 109.00 m, according to the elevation effect of
According to the elevation range of the study area, the geothermal water recharge area is mainly the low and middle mountain area of Cambrian Ordovician carbonate rocks in the western part of the basin.
[1] |
孙红丽. 关中盆地地热资源赋存特征及成因模式研究[D]. 北京: 中国地质大学(北京), 2015.
Sun H L. The bearing features and genetic model for geothermal resources in Guanzhong Basin[D]. Beijing: China University of Geosicences(Beijing), 2015(in Chinese with English abstract).
|
[2] |
余浩文, 刘昭, 荣峰, 等. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318
Yu H W, Liu Z, Rong F, et al. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34-44(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0318
|
[3] |
张子祥, 李文鑫. 兰州市永登县地热水成因模式和地质模型[J]. 地质科技情报, 2015, 34(2): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502029.htm
Zhang Z X, Li W X. Geothermal models in Yongdeng County, Lanzhou[J]. Geological Science and Technology Information, 2015, 34(2): 194-199(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502029.htm
|
[4] |
郎旭娟. 贵德盆地热结构及地热成因机制[D]. 北京: 中国地质科学院, 2016.
Lang X J. The thermal structure and geothermal genesis mechanism in Guide Basin[D]. Beijing: Chinese Academy of Geological Sciences, 2016(in Chinese with English abstract).
|
[5] |
陈刚, 万军伟, 郭鹏, 等. 湖北省利川市忠路镇洞脑壳温泉成因[J]. 地质科技情报, 2013, 32(4): 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304031.htm
Chen G, Wan J W, Guo P, et al. Analysis for the formation cause of Dongnaoke Hot Spring in Zhonglu Township, Lichuan, Hubei Province[J]. Geological Science and Technology Information, 2013, 32(4): 196-200(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304031.htm
|
[6] |
赵佳怡, 张薇, 马峰, 等. 雄安新区容城地热田地热流体化学特征[J]. 地质学报, 2020, 94(7): 1991-1998. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007008.htm
Zhao J Y, Zhang W, Ma F, et al. Geochemical characteristics of the geothermal fluid in the Rongcheng Geothermal Field, Xiong'an New Area[J]. Acta Geological Sinica, 2020, 94(7): 1991-1998(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007008.htm
|
[7] |
戴蔓, 蒋小伟, 罗银飞, 等. 地热水氢氧同位素控制因素识别与定量计算: 以青海贵德盆地为例[J]. 地学前缘, 2021, 28(1): 420-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101040.htm
Dai W, Jiang X W, Luo Y F, et al. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water: An example from the Guide Basin, Qinghai Province[J]. Earth Science Frontiers, 2021, 28(1): 420-427(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101040.htm
|
[8] |
田禹. 鲁东地热区氢氧同位素特征及地热水补给来源[J]. 地质科技情报, 2015, 34(6): 182-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506026.htm
Tian Y. Hydrogen and oxygen isotope characteristics and geothermal water supply source in East Shandong geothermal area[J]. Geological Science and Technology Information, 2015, 34(6): 182-185(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506026.htm
|
[9] |
高旭波, 向绚丽, 侯保俊, 等. 水化学-稳定同位素技术在岩溶水文地质研究中的应用[J]. 中国岩溶, 2020, 39(5): 629-636. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005001.htm
Gao X B, Xiang X L, Hou B J, et al. Application of hydrochemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica, 2020, 39(5): 629-636(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005001.htm
|
[10] |
张江华, 梁永平, 王维泰, 等. 硫同位素技术在北方岩溶水资源调查中的应用实例[J]. 中国岩溶, 2009, 28(3): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200903003.htm
Zhang J H, Liang Y P, Wang W T, et al. A practical use of 34S in the investigation of karst groundwater resource in North China[J]. Carsologica Sinica, 2009, 28(3): 235-241(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200903003.htm
|
[11] |
孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htm
Sun H L, Ma F, Lin W J, et al. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 2015, 34(3): 171-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htm
|
[12] |
任坤, 潘晓东, 兰干江, 等. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学, 2021, 42(9): 4267-4274. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202109020.htm
Ren K, Pan X D, Lan G J, et al. Seasonal variation and sources identification of dissolved sulfate in a typical karst subterranean stream basin using sulfur and oxygen isotopes[J]. Environmental Science, 2021, 42(9): 4267-4274(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202109020.htm
|
[13] |
刘延锋, 江贵荣, 靳孟贵, 等. 新疆焉耆盆地水环境氢氧同位素特征及其指示作用[J]. 地质科技情报, 2009, 28(6): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200906014.htm
Liu Y F, Jiang G R, Jin M G, et al. Features of environmental isotopes of hydrogen and oxygen of water and their indication in Yangqi Basin, China[J]. Geological Science and Technology Information, 2009, 28(6): 89-93(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200906014.htm
|
[14] |
赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析[J]. 地质科技情报, 2018, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm
Zhao C H, Liang Y P, Lu H P, et al. Hydrogen and oxygen isotope characteristics and influencing factors of karst water in Niangziguan Spring Area[J]. Geological Science and Technology Information, 2018, 37(5): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm
|
[15] |
彭凯, 刘文, 魏善明等. 基于水化学、同位素特征的济南岩溶地下水补给来源研究[J]. 中国岩溶, 2020, 39(5): 650-657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005003.htm
Peng K, Liu W, Wei S M, et al. Study on the recharge source of karst groundwater in Jinan city based on hydrogeochemical and isotopic characteristics[J]. Carsologica Sinica, 2020, 39(5): 650-657(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005003.htm
|
[16] |
Apollaro C, Dotsika E, Marini L, et al. Chemical and isotopic characterization of the thermomineral water of Terme Sibarite springs(Northern Calabria, Italy)[J]. Geochemical Journal, 2012, 46(2): 117-129.
|
[17] |
肖琼, 杨雷, 蒲俊兵, 等. 重庆温塘峡背斜地表水-地下水-浅层地热水中硫同位素的环境指示意义研究[J]. 地质学报, 2016, 90(8): 1945-1954. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608022.htm
Xiao Q, Yang L, Pu J B, et al. The environmental significance of sulfur isotope in surface water-ground water-shallow thermal water in Wentang Gorge Anticline, Chongqing, China[J]. Acta Geological Sinica, 2016, 90(8): 1945-1954(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608022.htm
|
[18] |
王洁青, 周训, 李晓璐, 等. 云南兰坪盆地羊吃蜜温泉水化学特征与成因分析[J]. 现代地质, 2017, 31(4): 822-830. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201704016.htm
Wang J Q, Zhou X, Li X L, et al. Hydrochemistry and formation of the Yangchimi Hot Spring in the Lanping Basin of Yunnan[J]. Geoscience, 2017, 31(4): 822-830(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201704016.htm
|
[19] |
Wu X, Li C, Sun B, et al. Groundwater hydrogeochemical formation and evolution in a karst aquifer system affected by anthropogenic impacts[J]. Environmental Geochemistry and Health, 2019: 1-18.
|
[20] |
Wu Z C, Liu J S, Han H T, et al. Geological and geochemical characteristics and metallogenic model of the Wenquan molybdenum deposit[J]. Chinese Journal of Geochemistry, 2011, 30(3): 391-397.
|
[21] |
Mohamed A Z, Hakim S, Sachio E. Geochemical and stable isotopic studies of Gulf of Suez's hot springs, Egypt[J]. Chinese Journal of Geochemistry, 2012, 31(2): 120-127.
|
[22] |
Clark I. Groundwater geochemistry and isotopes[M]. Abingdon: Taylor and Francis Group, 2015.
|
[23] |
Chen L, Wang G C, Hu F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, Northwestern China[J]. Journal of Arid Land, 2014, 6(4): 378-388.
|
[24] |
薛磊, 申中华, 张佰康. 济南市东部地区地热流体的化学特征研究[J]. 地下水, 2020, 42(4): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202004003.htm
Xu L, Shen Z H, Zhang B K. The brief analysis of the chemical characteristics of geothermal fluid in east Jinan[J]. Ground Water, 2020, 42(4): 10-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202004003.htm
|