Volume 42 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Wen Guojun, Gao Xiaofeng, Mao Yu, Cheng Siyi. Real-time detection algorithm of tunnel cracks based on GRU-CNN[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 249-256. doi: 10.19509/j.cnki.dzkq.tb20220129
Citation: Wen Guojun, Gao Xiaofeng, Mao Yu, Cheng Siyi. Real-time detection algorithm of tunnel cracks based on GRU-CNN[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 249-256. doi: 10.19509/j.cnki.dzkq.tb20220129

Real-time detection algorithm of tunnel cracks based on GRU-CNN

doi: 10.19509/j.cnki.dzkq.tb20220129
  • Received Date: 25 Mar 2022
  • Accepted Date: 07 Jul 2022
  • Rev Recd Date: 02 Jul 2022
  • Objective

    Tunnel cracks seriously damage the corresponding life time and traffic safety. However, traditional manual detections cannot efficiently and accurately identify a large number of cracks in long tunnels.This paper proposes a real-time detection algorithm for tunnel surface cracks.

    Methods

    It innovatively applies the Gate Recurrent Unit (GRU) model for text learning and signal analysis to image classification, improving detection speed and ensuring detection accuracy of tunnel cracks. To enhance training efficiency, the cracks are preprocessed and converted into the frequency domain to extract the key information of tunnel cracks, and the matrix is reconstructed into one-dimensional vectors. Then, one-dimensional convolutional neural network is used to extract the vector depth feature, and recurrent neural networks can learn corresponding sequential dependencies to realize tunnel cracks detection.

    Results

    Test results show that this model can reduce the number of training parameters and hardware configuration requirements. At the same time, the detection accuracy can reach 98.8%, and the detection speed for single image can reach in 2.1 s. Comparing with the mainstream classification detection algorithms, its accuracy remains unchanged, with significantly improvements of both training efficiency and prediction rate respectively.

    Conclusion

    Finally, a detection framework is developed for large-scale tunnel cracks to extract corresponding crack information effectively.

     

  • loading
  • [1]
    王剑非, 刘昆珏, 周文皎, 等. 香丽高速公路昌格洛滑坡-隧道工程病害三维数值分析[J]. 地质科技通报, 2022, 41(2): 34-43. doi: 10.19509/j.cnki.dzkq.2022.0009

    Wang J F, Liu K J, Zhou W J, et al. Three-dimensional numerical analysis of the Changgeluo landslide-tunnel engineering disaster on Shangri-La to Lijiang Highway[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 34-43(in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0009
    [2]
    李喜, 殷坤龙, 陈标典, 等. 武汉白沙洲长江两岸岩溶塌陷易发性评价与地铁建设过程中的防治对策[J]. 地质科技通报, 2020, 39(6): 121-130. doi: 10.19509/j.cnki.dzkq.2020.0612

    Li X, Yin K L, Chen B D, et al. Evaluation of susceptibility to karst collapse on both sides of the Yangtze River in Baishazhou, Wuhan and preventive measures in the process of metro construction[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 121-130(in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0612
    [3]
    Li P, Wang C, Li S M, et al. Research on crack detection method of airport runway based on twice-threshold segmentation[C]// Anon. International Conference on Instrumentation and Measurement, Computer, Communication and Control(IMCC). Qinhurydao: IEEE, 2015: 1716-1720.
    [4]
    杨心蕊, 许辰扬, 郑玉莹, 等. 基于遗传算法的阈值分割桥梁裂缝检测算法研究[J]. 广东土木与建筑, 2021, 28(10): 5-9.

    Yang X R, Xu C Y, Zheng Y Y, et al. Research on threshold segmentation algorithm of bridge crack detection based on genetic algorithm[J]. Guangdong Architecture Civil Engineering, 2021, 28(10): 5-9(in Chinese with English abstract).
    [5]
    Wang W X, Wang M F, Li H X, et al. Pavement crack image acquisition methods and crack extraction algorithms: A review[J]. Journal of Traffic and Transportation Engineering: English Edition, 2019, 6(6): 535-556. doi: 10.1016/j.jtte.2019.10.001
    [6]
    赵芳, 周旺辉, 陈岳涛, 等. 改进的Canny算子在裂缝检测中的应用[J]. 电子测量技术, 2018, 41(20): 107-111.

    Zhao F, Zhou W H, Chen Y T, et al. Application of improved Canny operator in crack detection[J]. Electronic Measurement Technology, 2018, 41(20): 107-111(in Chinese with English abstract).
    [7]
    董安国, 宋君, 张仙艳, 等. 基于图像的桥梁裂缝检测算法[J]. 自动化仪表, 2013, 34(8): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201308001.htm

    Dong A G, Song J, Zhang X Y, et al. Image-based bridge crack detection algorithm[J]. Process Automation Instrumentation, 2013, 34(8): 1-4(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201308001.htm
    [8]
    武旭娟, 郭骞, 宋捷. 公路隧道衬砌裂缝检测方法研究[J]. 北方交通, 2017(2): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT201702023.htm

    Wu X J, Guo Q, Song J. Research on detection method of cracks in highway tunnel lining[J]. Northern Communications, 2017(2): 81-83(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT201702023.htm
    [9]
    刘彦锋, 张文彪, 段太忠, 等. 深度学习油气藏地质建模研究进展[J]. 地质科技通报, 2021, 40(4): 235-241. doi: 10.19509/j.cnki.dzkq.2021.0417

    Liu Y F, Zhang W B, Duan T Z, et al. Progress of deep learning in oil and gas reservoir geological modeling[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 235-241(in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0417
    [10]
    Yang X, Wei S Y, Bao Y Q, et al. Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network[J]. Structural Control & Health Monitoring, 2019, 26(3): e2313.
    [11]
    Cha Y J, Choi W, Suh G, et al. Autonomous structural visual inspection using region: Based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747.
    [12]
    Protopapadakis E, Voulodimos A, Doulamis A, et al. Automatic crack detection for tunnel inspection using deep learning and heuristic image post-processing[J]. Applied Intelligence, 2019, 49(7): 2793-2806. doi: 10.1007/s10489-018-01396-y
    [13]
    Ren Y P, Huang J S, Hong Z Y, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234: 117367.
    [14]
    Kim B, Cho S. Image-based concrete crack assessment using mask and region-based convolutional neural network[J]. Structural Control & Health Monitoring, 2019, 26(8): e2381.
    [15]
    Dong Y A, Wang J, Wang Z F, et al. A deep-learning-based multiple defect detection method for tunnel lining damages[J]. IEEE Access, 2019, 7: 182643-182657.
    [16]
    常惠, 饶志强, 李益晨, 等. 基于改进残差网络的铁路隧道裂缝检测算法研究[J]. 东北师大学报: 自然科学版, 2021, 53(3): 56-63.

    Chang H, Rao Z Q, Li Y C, et al. Research on crack detection algorithm of railway tunnel based on improved residual network[J]. Journal of Northeast Normal University: Natural Science Edition, 2021, 53(3): 56-63(in Chinese with English abstract).
    [17]
    Zhang Q, Barri K, Babanajad S K, et al. Real-time detection of cracks on concrete bridge decks using deep learning in the Frequency Domain[J]. Engineering, 2021, 7(12): 1786-1796.
    [18]
    Zhao X Y, Huang P, Shu X B. Wavelet-attention CNN for image classification[J]. Multimedia Systems, 2022, 28(3): 915-924.
    [19]
    Watanabe T, Wolf D F. Image classification in frequency domain with 2SReLU: A second harmonics superposition activation function[J]. Applied Soft Computing, 2021, 112: 107851. https://www.sciencedirect.com/science/article/pii/S1568494621007730
    [20]
    Brosch T, Tam R. Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images[J]. Neural computation, 2015, 27(1): 211-227.
    [21]
    庞庆华, 董显蔚, 周斌, 等. 基于情感分析与TextRank的负面在线评论关键词抽取[J]. 情报科学, 2022, 40(5): 111-117.

    Pang Q H, Dong X W, Zhou B, et al. Keyword extraction of negative online reviews based on sentiment analysis[J]. Information Science, 2022, 40(5): 111-117(in Chinese with English abstract).
    [22]
    李冉冉, 刘大明, 刘正, 等. 融合笔画特征的胶囊网络文本分类[J]. 计算机工程, 2022, 48(3): 69-73, 80.

    Li R R, Liu D M, Liu Z, et al. Text classification using capsule network integrating stroke features[J]. Computer Engineering, 2022, 48(3): 69-73, 80(in Chinese with English abstract).
    [23]
    Zou J Z, Yang J X, Wang G P, et al. Bridge structural damage identification based on parallel CNN-GRU[J]. IOP Conference Series: Earth and Environmental Science, 2021, 626: 012017.
    [24]
    王亚飞, 韩静, 郭凰, 等. 基于Bi-LSTM的结构变形预测[J]. 计算机系统应用, 2021, 30(11): 304-309.

    Wang Y F, Han J, Guo H, et al. Prediction of structural deformation based on Bi-LSTM[J]. Computer Systems & Applications, 2021, 30(11): 304-309(in Chinese with English abstract).
    [25]
    Cho K, Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. CoRR, 2014. doi: org/ 10.48550/arXiv.1406.1078.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(449) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return