Citation: | Zhang Yang, Chen Xiaokang, Lin Xu, Li Chang'an, Liu Haijin, Liu Jie. Early Cenozoic drainage evolution in the Jianghan Basin: Constraints from detrital zircon U-Pb ages of surface rivers and cores in the basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 106-117. doi: 10.19509/j.cnki.dzkq.tb20220154 |
The evolution of large rivers is closely linked to the interactions between tectonic and climatic processes. Understanding the evolutionary history of these rivers is crucial for uncovering the influence of deep dynamic processes on the Earth's surface. In the Jianghan Basin, the preserved Cenozoic strata provide valuable insights into the evolutionary history of the Han and Yangtze Rivers.
By conducting a systematic analysis of detrital zircon U-Pb ages (
Provenance analysis reveals that the detrital material in the Jianghan Basin during the Early Eocene was primarily derived from the Qinling-Dabie Mountains. This can be attributed to the significant difference in elevation between the depression within the Jianghan Basin and the surrounding uplifted orogenic belts, which provided the necessary conditions for the development of large rivers. It is important to note that the Wuling Mountain and Huangling Anticline rivers did not serve as the main sources of sediment supply for the central, eastern, and southern depressions of the Jianghan Basin during this time period. Additionally, the Yangtze River, located west of the Huangling Anticline, did not flow into the Jianghan Basin in the Early Eocene.
Overall, the sediments in the Jianghan Basin were predominantly proximal deposits sourced from the adjacent orogenic belt, which can be attributed to the exhumation of the orogenic belt and a monsoon-like climate in the early Cenozoic era.
[1] |
Willett S D, Slingerland R, Hovius N. Uplift, shortening, and steady state topography in active mountain belts[J]. American Journal of Science, 2001, 301(4/5): 455-485.
|
[2] |
Zhang Y, Wang Q, Chen L, et al. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2008, 53(4): 584-590. doi: 10.1007/s11434-008-0111-1
|
[3] |
Yang S, Wang Z, Guo Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1): 56-65. doi: 10.1016/j.jseaes.2008.12.002
|
[4] |
Zheng H, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110
|
[5] |
林旭, 吴中海, 赵希涛, 等. 江汉盆地河流碎屑锆石U-Pb年龄特征及其对物源示踪研究的启示[J]. 地球学报, 2022, 43(1): 73-81.
Lin X, Wu Z H, Zhao X T, et al. Zircon U-Pb ages of fluvial detrital zircons in the Jianghan Basin and their implications for provenance tracing[J]. Acta Geologica Sinica, 2022, 43(1): 73-81.
|
[6] |
Liang Z W, Gao S, Hawkesworth C J, et al. Step-like growth of the continental crust in South China: Evidence from detrital zircons in Yangtze River sediments[J]. Lithos, 2018, 320: 155-171.
|
[7] |
Wang J, Li C, Yang Y, et al. Detrital zircon geochronology and provenance of core sediments in Zhoulao Town, Jianghan Plain, China[J]. Journal of Earth Science, 2010, 21(3): 257-271. doi: 10.1007/s12583-010-0090-4
|
[8] |
林旭, 刘静. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质, 2019, 41(2): 499-520.
Lin X, Liu J. A review of mountain-basin couping of Jianghan and Dongting basins with their surrounding mountains[J]. Seismology and Geology, 2019, 41(2): 499-520(in Chinese with English abstract).
|
[9] |
徐政语, 卢文忠, 林舸, 等. 秦岭-大别造山带与江南造山带的差异隆升过程: 来自江汉盆地中-新生代沉积记录的证据[J]. 地质科学, 2005, 40(2): 179-197.
Xu Z Y, Lu W Z, Lin K, et al. Discrepant uplifting processes of the Qinling-Dabie and Jiangnan orogens: Evidence from Meso-Cenozoic sedimentary records in the Jianghan Superimposed Basin[J]. Chinese Journal of Geology, 2005, 40(2): 179-197(in Chinese with English abstract).
|
[10] |
Lee J S, Chao Y T. Geology of the gorge district of the Yangtze(from Ichang to Tzekuei) with special reference to the development of the Gorges[J]. Bulletin of the Geological Society of China, 1924, 3(3/4): 351-391.
|
[11] |
李承三. 长江发育史[J]. 人民长江, 1956(12): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE195612001.htm
Li C S. Development history of the Yangtze River[J]. Yangtze River, 1956(12): 3-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE195612001.htm
|
[12] |
Lee C Y. The development of the Upper Yangtze valley[J]. Bulletin of the Geological Society of China, 1934, 3(2): 107-118.
|
[13] |
沈玉昌. 长江上游河谷[M]. 北京: 科学出版社, 1965.
Shen Y C. Upper Yangtze River valley[M]. Beijing: Science Press, 1965(in Chinese).
|
[14] |
杨达源. 长江地貌过程[M]. 北京: 地质出版社, 2006.
Yang D Y. Geomorphic process of the Yangtze River[M]. Beijing: Geological Publishing House, 2006(in Chinese).
|
[15] |
Richardson N J, Densmore A L, Seward D, et al. Did incision of the Three Gorges begin in the Eocene?[J]. Geology, 2010, 38(6): 551-554. doi: 10.1130/G30527.1
|
[16] |
Wang P, Zheng H, Chen L, et al. Exhumation of the Huangling anticline in the Three Gorges region: Cenozoic sedimentary record from the western Jianghan Basin, China[J]. Basin Research, 2014, 26(4): 505-522. doi: 10.1111/bre.12047
|
[17] |
Jiao R, Yang R, Yuan X. Incision history of the Three Gorges, Yangtze River constrained from inversion of river profiles and low-temperature thermochronological data[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(3): e2020JF005767. doi: 10.1029/2020JF005767
|
[18] |
Xiang F, Zhu L, Wang C, et al. Quaternary sediment in the Yichang area: Implications for the formation of the Three Gorges of the Yangtze River[J]. Geomorphology, 2007, 85(3/4): 249-258.
|
[19] |
康春国, 李长安, 张玉芬, 等. 宜昌砾石层重矿物组合特征及物源示踪分析[J]. 地质学报, 2014, 88(2): 254-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402008.htm
Kang C G, Li C A, Zhang Y F, et al. Heavy mineral characteristics of the Yichang gravel layers and provenance tracing[J]. Acta Geologica Sinica, 2014, 88(2): 254-262(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402008.htm
|
[20] |
沈玉昌. 汉水河谷的地貌及其发育史[J]. 地理学报, 1956, 22(4): 295-323.
Shen Y C. Geomorphology of the Hanshui valley[J]. Acta Geographica Sinica, 1956, 22(4): 295-323(in Chinese with English abstract).
|
[21] |
王明明. 汉中盆地周缘断裂活动性研究及发震构造分析[D]. 北京: 中国地震局地质研究所, 2010.
Wang M M. A study on developmental mechanism and tectonic evolution of the Hanzhong Basin[D]. Beijing: China Earthquake Administration, 2010(in Chinese with English abstract).
|
[22] |
任美锷, 杨戍. 湘江流域的某些地貌和第四纪地质问题[J]. 地理学报, 1957, 23(4): 359-377.
Ren M E, Yang S. Some problems on the geomorphology and Quaternary geology of the Hsiang Kiang Basin, Hunan Province[J]. Acta Geographica Sinica, 1957, 23(4): 359-377(in Chinese with English abstract).
|
[23] |
Jia J, Zheng H, Huang X, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(15): 1520-1528. doi: 10.1007/s11434-010-3091-x
|
[24] |
Fu X, Zhu W, Geng J, et al. The present-day Yangtze River was established in the Late Miocene: Evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences, 2021, 205: 104600. doi: 10.1016/j.jseaes.2020.104600
|
[25] |
Zhang J, Krijgsman W, Lu Y, et al. Detrital zircon ages reveal Yangtze provenance since the Early Oligocene in the East China Sea Shelf Basin[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2021, 577: 110548. doi: 10.1016/j.palaeo.2021.110548
|
[26] |
林旭, 赵希涛, 吴中海, 等. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 2020, 39(6): 10-18. doi: 10.19509/j.cnki.dzkq.2020.0602
Lin X, Zhao X T, Wu Z H, et al. Source tracing of K-feldspar of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 10-18(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0602
|
[27] |
Deng B, Chew D, Mark C, et al. Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda[J]. GSA Bulletin, 2021, 133(1/2): 199-211.
|
[28] |
林旭, 李玲玲, 刘静, 等. 长江早更新世向江汉盆地输送碎屑物质: 来自碎屑锆石U-Pb年龄的约束[J/OL]. 地球科学.
Lin X, Li L L, Liu J, et al. The Yangtze River contributed detrital materials to the Jianghan Basin during the Early Pleistocene: Constraints from detrital zircon U-Pb ages[J/OL]. Earth Sciences.
|
[29] |
He M Y, Zheng H B, Clift P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in central China[J]. Chemical Geology, 2013, 360: 186-203.
|
[30] |
Li S, Suo Y, Li X, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews, 2019, 192: 91-137. doi: 10.1016/j.earscirev.2019.03.003
|
[31] |
戴世昭. 江汉盐湖盆地石油地质[M]. 北京: 石油工业出版社, 1997.
Dai S Z. Petroleum geology of Jianghan Salt Lake Basin[M]. Beijing: Petroleum Industry Press, 1997(in Chinese).
|
[32] |
姚纪明, 剧永涛, 劳海港, 等. 中扬子区晚侏罗世至新近纪沉积特征研究[M]. 武汉: 武汉大学出版社, 2015.
Yao J M, Ju Y T, Lao H G, et al. Sedimentary characteristics from Late Jurassic to Neogene in the Middle Yangtze Area[M]. Wuhan: Wuhan University Press, 2015(in Chinese).
|
[33] |
李俊. 中扬子上侏罗纪-古近系古水流特征及其与盆地充填演化的关系[D]. 北京: 中国地质大学(北京), 2009.
Li J. Relationship between characteristics of paleocurrent and basin-filling evolution of Upper Jurassic-Paleogene in middle Yangtze area[D]. Beijing: China University of Geosciences (Beijing), 2009(in Chinese with English abstract).
|
[34] |
Yu X, Liu C, Wang C, et al. Provenance of rift sediments in a composite basin-mountain system: Constraints from petrography, whole-rock geochemistry, and detrital zircon U-Pb geochronology of the Paleocene Shashi Formation, southwestern Jianghan Basin, central China[J]. International Journal of Earth Sciences, 2018, 107(8): 2741-2766. doi: 10.1007/s00531-018-1624-8
|
[35] |
吴路路. 江汉盆地的开始、演化与夭折: 基底构造与地幔动力的共同制约[D]. 武汉: 中国地质大学(武汉), 2019.
Wu L L. The initiation, evolution and abandonment of the Jianghan Basin: Combined influence of basement structures and mantle dynamics[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in Chinese with English abstract).
|
[36] |
Wu L L, Mei L F, Liu Y S, et al. Multiple provenance of rift sediments in the composite basin-mountain system: Constraints from detrital zircon U-Pb geochronology and heavy minerals of the Early Eocene Jianghan Basin, central China[J]. Sedimentary Geology, 2017, 349: 46-61.
|
[37] |
王孝磊, 周金城, 陈昕, 等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 2017, 36(5): 714-735.
Wang X L, Zhou J C, Chen X, et al. Formation and evolution of the Jiangnan Orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 714-735(in Chinese with English abstract).
|
[38] |
郑志锋. 中扬子地区晚中生代构造转型: 秭归盆地沉积及黄陵背斜隆升的研究[D]. 广州: 中国科学院广州地球化学研究所, 2019.
Zheng Z F. Late Mesozoic structural transition in the Middle Yangtze Region: Study on sedimentation of Zigui Basin and uplift of Huangling anticline[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2019(in Chinese with English abstract).
|
[39] |
Zhang S, Liu C, Yang M, et al. Decoding provenance and tectonothermal events by detrital zircon fission-track and U-Pb double dating: A case of the Southern Ordos Basin[J]. Acta Geologica Sinica: English Edition, 2019, 93(4): 845-856.
|
[40] |
Saylor J E, Jordan J C, Sundell K E, et al. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau[J]. Basin Research, 2018, 30(3): 544-563.
|
[41] |
张凌, 王平, 陈玺赟, 等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202004008.htm
Zhang L, Wang P, Chen X Y, et al. Review indetrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202004008.htm
|
[42] |
Deng B, Chew D, Jiang L, et al. Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte Basin: Implications for a transcontinental source-to-sink system during Late Cretaceous time[J]. Bulletin, 2018, 130(11/12): 2087-2109.
|
[43] |
Zhao X D, Zhang H P, Hetzel R, et al. Existence of a continental-scale river system in eastern Tibet during the Late Cretaceous-Early Palaeogene[J]. Nature communications, 2021, 12(1): 7231.
|
[44] |
Chen Y, Yan M D, Fang X M, et al. Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River[J]. Earth and Planetary Science Letters, 2017, 476: 22-33.
|
[45] |
Feng Y, Song C, He P, et al. Detrital zircon U-Pb geochronology of the Jianchuan Basin, southeastern Tibetan Plateau, and its implications for tectonic and paleodrainage evolution[J]. Terra Nova, 2021, 33(6): 560-572.
|
[46] |
Zheng H, Clift P D, He M, et al. Formation of the First Bend in the Late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 2021, 49(1): 35-39.
|
[47] |
Zhang Z, Daly J S, Yan Y, et al. No connection between the Yangtze and Red rivers since the Late Eocene[J]. Marine and Petroleum Geology, 2021, 129: 105115.
|
[48] |
胡忠贵, 胡明毅, 胡九珍, 等. 潜江凹陷东部地区新沟咀组下段浅水三角洲沉积模式[J]. 中国地质, 2011, 38(5): 1263-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105014.htm
Hu Z G, Hu M Y, Hu J Z, et al. Shallow water delta depositional model of the lower segment of the Xingouzui Formation in eastern Qianjiang Depression[J]. Geology in China, 2011, 38(5): 1263-1273(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105014.htm
|
[49] |
谢春安, 胡明毅, 贾秀容, 等. 潜江凹陷马王庙地区古近系新沟嘴组下段物源分析[J]. 海洋石油, 2010, 30(4): 56-60.
Xie C A, Hu M Y, Jia X R, et al. Provenance analysis of the Lower Member of Xingouzui Formation of Paleogene System in Mawangmiao area of Qianjiang Sag[J]. Offshore Oil, 2010, 30(4): 56-60(in Chinese with English abstract).
|
[50] |
袁志云. 江汉盆地新沟嘴组沉积充填特征及其构造控制作用研究[D]. 北京: 中国地质大学(北京), 2010.
Yuan Z Y. Study on sedimentary filling characteristics and tectonic control of Xinguozui Formation in Jianghan Basin[D]. Beijing: China University of Geosciences (Beijing), 2010(in Chinese with English abstract).
|
[51] |
余小灿, 王春连, 刘成林, 等. 江陵凹陷古新统沉积岩稀土元素地球化学特征及其地质意义[J]. 矿床地质, 2014, 33(5): 1057-1068.
Yu X C, Wang C L, Liu C L, et al. REE geochemical characteristics of sedimentary rocks in Jiangling Depression and their geological significance[J]. Mineral Deposits, 2014, 33(5): 1057-1068(in Chinese with English abstract).
|
[52] |
Li J H, Zhang Y Q, Dong S W, et al. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98-136.
|
[53] |
Tang S L, Yan D P, Qiu L, et al. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics?[J]. Gondwana Research, 2014, 25(4): 1644-1659.
|
[54] |
吴中海, 吴珍汉, 万景林, 等. 华山新生代隆升-剥蚀历史的裂变径迹热年代学分析[J]. 地质科技情报, 2003, 22(3): 27-32.
Wu Z H, Wu Z H, Wan J L, et al. Cenozoic uplift and denudation history of Huashan Mountains: Evidence from fission track thermochronology of Huashan granite[J]. Geological Science and Technology Information, 2003, 22(3): 27-32(in Chinese with English abstract).
|
[55] |
Enkelmann E, Ratschbacher L, Jonckheere R, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J]. Geological Society of America Bulletin, 2006, 118(5/6): 651-671.
|
[56] |
Zhang W, Wang F, Wu L, et al. Reactivated margin of the western North China Craton in the Late Cretaceous: Constraints from zircon (U-Th)/He thermochronology of Taibai Mountain[J]. Tectonics, 2022, 41(2): e2021TC007058.
|
[57] |
Xu C, Zhou Z, Van D E P, et al. Apatite-fission-track geochronology and its tectonic correlation in the Dabieshan orogen, central China[J]. Science in China Series D: Earth Sciences, 2005, 48(4): 506-520.
|
[58] |
Hu S B, Kohn B P, Raza A, et al. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology[J]. Tectonophysics, 2006, 420(3/4): 409-429.
|
[59] |
Ding R X, Chang Y, Min K, et al. Post-orogenic topographic evolution of the Dabie orogen, eastern China: Insights from apatite and zircon (U-Th)/He thermochronology[J]. Geomorphology, 2021, 374: 107487.
|
[60] |
Shen C B, Hu D, Min K, et al. Post-orogenic tectonic evolution of the Jiangnan-Xuefeng orogenic belt: Insights from multiple geochronometric dating of the Mufushan Massif, South China[J]. Journal of Earth Science, 2020, 31(5): 905-918.
|
[61] |
Hu S, Raza A, Min K, et al. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the North China craton through the Qinling orogen into the Yangtze Craton, central China[J]. Tectonics, 2006, 25(6): TC6009.
|
[62] |
Teng X, Fang X, Kaufman A J, et al. Sedimentological and mineralogical records from drill core SKD1 in the Jianghan Basin, central China, and their implications for Late Cretaceous-Early Eocene climate change[J]. Journal of Asian Earth Sciences, 2019, 182: 103936.
|