Volume 42 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Gao Zhihui, Zuo Lu. A quantitative evaluation method regarding the natural void ratio of undisturbed loess[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 53-62. doi: 10.19509/j.cnki.dzkq.tb20220172
Citation: Gao Zhihui, Zuo Lu. A quantitative evaluation method regarding the natural void ratio of undisturbed loess[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 53-62. doi: 10.19509/j.cnki.dzkq.tb20220172

A quantitative evaluation method regarding the natural void ratio of undisturbed loess

doi: 10.19509/j.cnki.dzkq.tb20220172
  • Received Date: 20 Apr 2022
  • Accepted Date: 23 May 2022
  • Rev Recd Date: 16 May 2022
  • Objective

    The natural void ratio is the most frequently used and important characterisation parameter of the initial structure at the macroscopic level. Therefore, the analysis and prediction of the distribution pattern of the natural void ratio of loess is important for understanding undisturbed loess disaster mechanics behaviour and for disaster early warning from the geotechnical point of view.

    Methods

    In this study, particle analysis tests, XRD tests, natural void ratio tests and 1D consolidation tests were carried out on in situ soil samples from different layers of a typical loess site to analyse the correlation between the natural void ratio and particle fraction and stress history. The results show that the natural void ratio can be affected by the stress history and particle size distribution. The higher the overburden pressure is, the more uniform the grading is and the smaller the natural pore ratio is. The water content may be one of the reasons for the variation in the natural void ratio.

    Results

    On this basis, the burial depth of the layer, the inhomogeneous coefficient and curvature coefficient of particle gradation, and the natural water content are selected as the influencing factors, and the natural void ratio is evaluated quantitatively based on the machine learning algorithm. The SSA and PSO algorithm were introduced to optimise the weights and thresholds of the BP neural network, and natural void ratio predicted models based on the BP, SSA-BP and PSO-BP neural networks were established. The trained BP, SSA-BP and PSO-BP neural network models were then used to predict 16 sets of validation and test data, and the predicted results were compared with the measured natural void ratios.

    Conclusion

    The results show that the PSO-BP-based neural network model predicts significantly better than the SSA-BP and BP neural network models, and can effectively predict the natural void ratio.

     

  • loading
  • [1]
    张炜, 张苏民. 非饱和黄土的结构强度特性[J]. 水文地质工程地质, 1990, 17(4): 22-25, 49.

    Zhang W, Zhang S M. Structural strength characteristics of unsaturated loess[J]. Hydrogeology & Engineering Geology, 1990, 17(4): 22-25, 49(in Chinese with English abstract).
    [2]
    姜高磊, 刘林敬, 毕志伟, 等. 河北丰宁黄土粒度特征及其环境意义[J]. 地质科技情报, 2018, 37(4): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804011.htm

    Jiang G L, Liu L J, Bi Z W, et al. Grain-size characteristics and its environmental significance of loess in Fengning, Hebei Province[J]. Geological Science and Technology Information, 2018, 37(4): 83-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804011.htm
    [3]
    党进谦, 李靖. 非饱和黄土的结构强度与抗剪强度[J]. 水利学报, 2001, 32(7): 79-83, 90.

    Dang J Q, Li J. Structural strength and shear strength of unsaturated loess[J]. Journal of Hydraulic Engineering, 2001, 32(7): 79-83, 90(in Chinese with English abstract).
    [4]
    张伯平, 王力, 袁海智. 含水量对黄土结构强度影响的定量分析[J]. 西北农业大学学报, 1994, 22(1): 54-60.

    Zhang B P, Wang L, Yuan H Z. Quantitative analysis of influence of water content on structural strength of loess[J]. Journal of Northwest Agricultural University, 1994, 22(1): 54-60(in Chinese with English abstract).
    [5]
    冯立, 张茂省, 胡炜, 等. 黄土垂直节理细微观特征及发育机制探讨[J]. 岩土力学, 2019, 40(1): 235-244.

    Feng L, Zhang M S, Hu W, et al. Discussion on microscopic, microcosmic characteristics and developmental mechanism of loess vertical joints[J]. Rock and Soil Mechanics, 2019, 40(1): 235-244(in Chinese with English abstract).
    [6]
    罗浩, 伍法权, 常金源, 等. 马兰黄土孔隙结构特征: 以赵家岸地区黄土为例[J]. 工程地质学报, 2021, 29(5): 1366-1372.

    Luo H, Wu F Q, Chang J Y, et al. Pore characteristics of Malan loess: A case study at Zhaojia'an landslide[J]. Journal of Engineering Geology, 2021, 29(5): 1366-1372(in Chinese with English abstract).
    [7]
    田堪良, 王沛, 张慧莉. 考虑结构性的原状黄土应力-应变关系的探讨[J]. 岩土力学, 2013, 34(7): 1893-1898.

    Tian K L, Wang P, Zhang H L. Discussion on stress-strain relation of intact loess considering soil structure[J]. Rock and Soil Mechanics, 2013, 34(7): 1893-1898(in Chinese with English abstract).
    [8]
    Jiang M, Zhang F, Hu H, et al. Structural characterization of natural loess and remolded loess under triaxial tests[J]. Engineering Geology, 2014, 181: 249-260. doi: 10.1016/j.enggeo.2014.07.021
    [9]
    郑佳, 庄建琦, 孔嘉旭, 等. 基于CT扫描的黄土孔隙结构特征研究[J]. 地质科技通报, 2022, 41(6): 211-222. doi: 10.19509/j.cnki.dzkq.2022.0210

    Zheng J, Zhuang J Q, Kong J X, et al. Study on pore structure characteristics of loess based on CT scanning[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 211-222(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0210
    [10]
    李泽坤, 马鹏辉, 彭建兵, 等. 黑方台地区马兰黄土渗透特性及结构损伤试验研究[J]. 地质科技通报, 2022, 41(6): 200-210. doi: 10.19509/j.cnki.dzkq.2022.0251

    Li Z K, Ma P H, Peng J B, et al. Experimental study on permeability characteristics and structural damage of Malan loess in Heifangtai area[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 200-210(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0251
    [11]
    井旭, 谢婉丽, 单帅. 原状及重塑黄土双轴试验微观力学特征离散元模拟[J]. 地质科技通报, 2021, 40(3): 184-193. doi: 10.19509/j.cnki.dzkq.2021.0311

    Jing X, Xie W L, Shan S. Discrete element simulation study on micromechanical characteristics of undisturbed and remolded loess in biaxial test[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 184-193(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0311
    [12]
    井彦林. 基于数据挖掘技术的黄土湿陷性研究[D]. 西安: 西安理工大学, 2006.

    Jing Y L. Study on loess collapsibility based on data mining[D]. Xi 'an: Xi 'an University of Technology, 2006(in Chinese with English abstract).
    [13]
    马闫, 王家鼎, 彭淑君, 等. 黄土湿陷性与土性指标的关系及其预测模型[J]. 水土保持通报, 2016, 36(1): 120-128.

    Ma Y, Wang J D, Peng S J, et al. Relationship between physical-mechanical parameters and collapsibility of loess soil and its prediction model[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 120-128(in Chinese with English abstract).
    [14]
    叶为民, 崔玉军, 黄雨, 等. 黄土的湿陷性及其评价准则[J]. 岩石力学与工程学报, 2006, 35(3): 550-556. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200603021.htm

    Ye W M, Cui Y J, Huang Y, et al. Collapsibility of loess and its discrimination criteria[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 35(3): 550-556(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200603021.htm
    [15]
    徐志军, 郑俊杰, 张军, 等. 聚类分析和因子分析在黄土湿陷性评价中的应用[J]. 岩土力学, 2010, 31(增刊2): 407-411. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2073.htm

    Xu Z J, Zheng J J, Zhang J, et al. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. Rock and Soil Mechanics, 2010, 31(S2): 407-411(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2073.htm
    [16]
    高凌霞, 栾茂田, 杨庆. 基于微结构参数主成分的黄土湿陷性评价[J]. 岩土力学, 2012, 33(7): 1921-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207002.htm

    Gao L X, Luan M T, Yang Q. Evaluation of loess collapsibility based on principal components of microstructural parameters[J]. Rock and Soil Mechanics, 2012, 33(7): 1921-1926(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207002.htm
    [17]
    Xu L, Coop M R. The mechanics of a saturated silty loess with a transitional mode[J]. Géotechnique, 2017, 67(7): 581-596.
    [18]
    Xu L, Gao C, Lan T, et al. Influence of grading on the compressibility of saturated loess soils[J]. Géotechnique Letters, 2020, 10(2): 198-204.
    [19]
    Zuo L, Xu L, Baudet B A, et al. The structure degradation of a silty loess induced by long-term water seepage[J]. Engineering Geology, 2020, 272: 105634.
    [20]
    Paz-Ferreiro J, Vázquez E V, Miranda J G V. Assessing soil particle-size distribution on experimental plots with similar texture under different management systems using multifractal parameters[J]. Geoderma, 2010, 160(1): 47-56.
    [21]
    谢远云, 李长安, 何葵, 等. 青海省民和黄土的粒度组成及气候含义[J]. 地质科技情报, 2002, 21(2): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200202008.htm

    Xie Y Y, Li C A, He K, et al. Climatic implication and grains size composition from Minhe loess in Qinghai Province[J]. Geological Science and Technology Information, 2002, 21(2): 41-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200202008.htm
    [22]
    Sun J. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002, 203(3/4): 845-859.
    [23]
    Li Y, Shi W, Aydin A, et al. Loess genesis and worldwide distribution[J]. Earth-Science Reviews, 2020, 201: 102947.
    [24]
    Liu Z, Liu F, Ma F, et al. Collapsibility, composition, and microstructure of loess in China[J]. Canadian Geotechnical Journal, 2016, 53(4): 673-686.
    [25]
    Derbyshire E. Geological hazards in loess terrain, with particular reference to the loess regions of China[J]. Earth-Science Reviews, 2001, 54(1/3): 231-260.
    [26]
    曹宇清, 吴永, 安向勇, 等. 考虑应力历史和应力水平影响的土体压缩模量计算方法[J]. 工程地质学报, 2019, 27(4): 760-765. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201904009.htm

    Cao Y Q, Wu Y, An X Y, et al. Calculation method of soil compression modulus considering the influence of stress history and stress level[J]. Journal of Engineering Geology, 2019, 27(4): 760-765(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201904009.htm
    [27]
    Estabragh A R, Javadi A A, Boot J C. Effect of compaction pressure on consolidation behaviour of unsaturated silty soil[J]. Canadian Geotechnical Journal, 2004, 41(3): 540-550.
    [28]
    Chang C S, Deng Y, Yang Z. Modeling of minimum void ratio for granular soil with effect of particle size distribution[J]. Journal of Engineering Mechanics, 2017, 143(9): 04017060.
    [29]
    Xu Z, Xu N, Wang H. Effects of particle shapes and sizes on the minimum void ratios of sand[J]. Advances in Civil Engineering, 2019, 2019: 5732656.
    [30]
    简涛, 李喜安, 王力, 等. 颗粒组构对黄土压缩特性及其粒间状态的影响[J]. 科学技术与工程, 2018, 18(30): 212-219.

    Jian T, Li X A, Wang L, et al. Effect of grain fabric on compressive properties and intergranular state of loess[J]. Science Technology and Engineering, 2018, 18(30): 212-219(in Chinese with English abstract).
    [31]
    杨坪, 吴民晖, 许德鲜. 含水率对重塑黄土的变形特性影响的实验研究[J]. 工程地质学报, 2015, 23(6): 1066-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506006.htm

    Yang P, Wu M H, Xu D X. Experimental study on the effect of water content on deformation characteristics of remolded loess[J]. Journal of Engineering Geology, 2015, 23(6): 1066-1071(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506006.htm
    [32]
    张晓周, 卢玉东, 李鑫, 等. 增湿条件下泾阳南塬马兰黄土孔隙率变化研究[J]. 干旱区资源与环境, 2019, 33(6): 99-104.

    Zhang X Z, Lu Y D, Li X, et al. The change of Malan loess porosity in south Jingyang Plateau under humidification condition[J]. Journal of Arid Land Resources and Environment, 2019, 33(6): 99-104(in Chinese with English abstract).
    [33]
    Russell A R. How water retention in fractal soils depends on particle and pore sizes, shapes, volumes and surface areas[J]. Géotechnique, 2014, 64(5): 379-390.
    [34]
    沈花玉, 王兆霞, 高成耀, 等. BP神经网络隐含层单元数的确定[J]. 天津理工大学学报, 2008, 91(5): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TEAR200805006.htm

    Shen H Y, Wang Z X, Gao C Y, et al. Determination the number of BP neural network hidden layer units[J]. Journal of Tianjin University of Technology, 2008, 91(5): 13-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TEAR200805006.htm
    [35]
    薛建凯. 一种新型的群智能优化技术的研究与应用[D]. 上海: 东华大学, 2020.

    Xue J K. Research and application of a novel swarm intelligence optimization technique: Sparrow search algorithm[D]. Shanghai: Donghua University, 2020(in Chinese with English abstract).
    [36]
    Zhang W, Gu X, Tang L, et al. Application of machine learning, deep learning and optimization algorithms in Geoengineering and Geoscience: Comprehensive review and future challenge[J]. Gondwana Research, 2022, 109: 1-17.
    [37]
    涂娟娟. PSO优化神经网络算法的研究及其应用[D]. 江苏镇江: 江苏大学, 2020.

    Tu J J. Research onlearning algorithm of neural network optimized with PSO and its application[D]. Zhenjiang Jiangsu: Jiangsu University, 2020(in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(406) PDF Downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return