Volume 42 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Hu Yinqiu, Wu Bin, Ren Qian. Genesis of silica-rich carbonatite in the Miaoya complex, Hubei Province and its implications for REE mineralization[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 41-59. doi: 10.19509/j.cnki.dzkq.tb20220183
Citation: Hu Yinqiu, Wu Bin, Ren Qian. Genesis of silica-rich carbonatite in the Miaoya complex, Hubei Province and its implications for REE mineralization[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 41-59. doi: 10.19509/j.cnki.dzkq.tb20220183

Genesis of silica-rich carbonatite in the Miaoya complex, Hubei Province and its implications for REE mineralization

doi: 10.19509/j.cnki.dzkq.tb20220183
  • Received Date: 29 Apr 2022
  • The Miaoya complex in Hubei Province hosts one of the most important REE deposit in China. This complex is composed of syenite, carbonatite (SiO2 < 10%), and a suite of silica-rich carbonatite (SiO2>30%). The petrology and mineralogy of silica-rich carbonatite were investigated by the electron probe microanalyzer (EPMA), X-ray fluorescence spectrometer (XRF), laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) and other analytical methods, aiming to decipher the genesis and potential REE mineralization of silica-rich carbonatite from the REE ore bodies in carbonatite. First, silicate minerals of silica-rich carbonatite are dominated by K-feldspar, albite and quartz, which is similar with associated syenite, rather than adjacent Silurian Meiziya Group schist. This suggests that these silicate minerals are probably xenocrystals from syenite. Second, the captured K-feldspar in silica-rich carbonatite has irregular compositional zoning and higher Sr isotopes compared to marine sediments, implying the presence of postmagmatic fluid activity. In addition, the Th-Pb age of hydrothermal monazite associated with silicate minerals in silica-rich carbonatite yields (235.1±1.5) Ma, suggesting that this fluid activity is probably related to the regional metamorphic event related to the closure of the Mianlue Ocean (246-221 Ma) during the collision between the North China Craton and the Yangzi Craton. During the postmagmatic stage, Si and REEs are remobilized from silicate xenocrystals and fluorapatite into fluids, respectively. Moreover, Si in fluids could promote REE transport by these Sr-Ba-Si-rich fluids and ultimately lead to relatively low REE contents in these silica-rich carbonatites.

     

  • loading
  • [1]
    Chakhmouradian A R. High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites[J]. Chemical Geology, 2006, 235(1/2): 138-160. http://www.sciencedirect.com/science/article/pii/S000925410600324X
    [2]
    Chakhmouradian A R, Wall F. Rare earth elements: Minerals, mines, magnets (and more)[J]. Elements, 2012, 8(5): 333-340. doi: 10.2113/gselements.8.5.333
    [3]
    Chen W, Simonetti A, Burns P C. A combined geochemical and geochronological investigation of niocalite from the Oka carbonatite complex, Canada[J]. The Canadian Mineralogist, 2013, 51(5): 785-800. doi: 10.3749/canmin.51.5.785
    [4]
    Smith M P, Campbell L S, Kynicky J. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions[J]. Ore Geology Reviews, 2015, 64: 459-476. doi: 10.1016/j.oregeorev.2014.03.007
    [5]
    Poletti J E, Cottle J M, Hagen-Peter G A, et al. Petrochronological constraints on the origin of the Mountain Pass ultrapotassic and carbonatite intrusive suite, California[J]. Journal of Petrology, 2016, 57(8): 1555-1598.
    [6]
    Yang X, Lai X, Pirajno F, et al. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, North China Craton: A perspective review[J]. Precambrian Research, 2017, 288: 39-71. doi: 10.1016/j.precamres.2016.11.008
    [7]
    Liu Y L, Ling M X, Williams I S, et al. The formation of the giant Bayan Obo REE-Nb-Fe deposit, North China, Mesoproterozoic carbonatite and overprinted Paleozoic dolomitization[J]. Ore Geology Reviews, 2018, 92: 73-83. doi: 10.1016/j.oregeorev.2017.11.011
    [8]
    Song W, Xu C, Smith M P, et al. Genesis of the world's largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over~1b. y. [J]. Geology, 2018, 46(4): 323-326. doi: 10.1130/G39801.1
    [9]
    Halama R, Vennemann T, Siebel W, et al. The Grønnedal-Ika carbonatite-syenite complex, South Greenland: Carbonatite formation by liquid immiscibility[J]. Journal of Petrology, 2005, 46(1): 191-217.
    [10]
    Ruwe R, Giebel R J, Walter B. The fade of crustal contamination in the Gross Brukkaros carbonatites[J/OL]. (2021-09-16)[2022-09-12]. https://www.researchgate.net/publication/354623678.
    [11]
    李石. 湖北庙垭碳酸岩地球化学特征及岩石成因探讨[J]. 地球化学, 1980(4): 345-355. doi: 10.3321/j.issn:0379-1726.1980.04.003

    Li S. Geochemical features and petrogenesis of the Miaoya carbonatite, Hubei[J]. Geochimica, 1980(4): 345-355(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1980.04.003
    [12]
    Zhu J, Wang L, Peng S, et al. U-Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, Central China[J]. Geological Journal, 2016, 52(6): 938-954.
    [13]
    Zhang D, Liu Y, Pan J, et al. Mineralogical and geochemical characteristics of the Miaoya REE prospect, Qinling Orogenic Belt, China: Insights from Sr-Nd-CO isotopes and LA-ICP-MS mineral chemistry[J]. Ore Geology Reviews, 2019, 110: 102932. doi: 10.1016/j.oregeorev.2019.05.018
    [14]
    Samoilov V S. The main geochemical features of carbonatites[J]. Journal of Geochemical Exploration, 1991, 40(1/3): 251-262.
    [15]
    Barker D S. Calculated silica activities in carbonatite liquids[J]. Contributions to Mineralogy and Petrology, 2001, 141(6): 704-709. doi: 10.1007/s004100100281
    [16]
    Giebel R J, Parsapoor A, Walter B F, et al. Evidence for magma-wall rock interaction in carbonatites from the Kaiserstuhl Volcanic Complex (Southwest Germany)[J]. Journal of Petrology, 2019, 60(6): 1163-1194. doi: 10.1093/petrology/egz028
    [17]
    周远斌, 王保民. 竹山县庙垭发现大型铌-稀土矿[J]. 计划与市场, 1994(11): 42. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSC199411025.htm

    Zhou Y B, Wang B M. Large niobium-rare earth deposit discovered in Miaoya, Zhushan County[J]. The Planning and Market, 1994(11): 42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JHSC199411025.htm
    [18]
    Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in Central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007
    [19]
    Wu B, Hu Y Q, Bonnetti C, et al. Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, Central China and its implications for Nb mineralization[J]. Ore Geology Reviews, 2021, 132: 104059. doi: 10.1016/j.oregeorev.2021.104059
    [20]
    张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学: 地球科学, 1996, 26(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603000.htm

    Zhang G W, Meng Q R, Yu Z P, et al. The orogenic processes and dynamics of the Qinling Orogenic Belt[J]. Science of China: Earth Science, 1996, 26(3): 193-200(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603000.htm
    [21]
    朱伟鹏, 宋公社, 许锋, 等. 东秦岭商丹地区富铷花岗伟晶岩脉矿化特征及其地质意义[J]. 地质科技通报, 2022, 41(3): 54-67. doi: 10.19509/j.cnki.dzkq.2021.0092

    Zhu W P, Wang B M, Xu F, et al. Mineralization characteristics and geological significance of Rb-rich granitic pegmatite veins in Shangnan-Danfeng area, eastern Qinling belt[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 54-67(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0092
    [22]
    Dong Y, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009
    [23]
    李曙光, 孙卫东, 张国伟, 等. 南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学: 古生代洋盆及其闭合时代的证据[J]. 中国科学: 地球科学, 1996, 26(3): 223-230. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603004.htm

    Li S G, Sun W D, Zhang G W, et al. Chronology and geochemistry of the Hegouxia metamorphic volcanic rocks in the Vengliu tectonic belt of the South Qinling Mountains: Evidence of the Paleozoic ocean basin and its closure age[J]. Science of China: Earth Sciences, 1996, 26(3): 223-230(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603004.htm
    [24]
    Qin J F, Lai S C, Grapes R, et al. Origin of Late Triassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, Central China: Implications for subduction of continental crust[J]. Lithos, 2010, 120(3/4): 347-367.
    [25]
    晁会霞, 苏生瑞, 杨兴科, 等. 湖北庙垭稀土矿床地质特征研究[J]. 地学前缘, 2016, 23(4): 102-108. doi: 10.13745/j.esf.2016.04.009

    Chao H X, Su S R, Yang X K, et al. Research on the geological characteristics of the Miaoya REE deposit, Hubei Province[J]. Earth Science Frontiers, 2016, 23(4): 102-108(in Chinese with English abstract). doi: 10.13745/j.esf.2016.04.009
    [26]
    李石. 鄂北地区碱性岩的时代及成因[J]. 岩石学报, 1991(3): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199103003.htm

    Li S. Age and genesis of the alkaline rocks in the northern Hubei Province[J]. Acta Petrologica Sinica, 1991(3): 27-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199103003.htm
    [27]
    Xu C, Campbell I H, Allen C M, et al. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China[J]. Lithos, 2008, 105(1/2): 118-128.
    [28]
    Xu C, Chakhmouradian A R, Taylor R N, et al. Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China blocks[J]. Geochimica et Cosmochimica Acta, 2014, 143: 189-206. doi: 10.1016/j.gca.2014.03.041
    [29]
    Xu C, Kynicky J, Chakhmouradian A R, et al. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit, Central China[J]. Lithos, 2015, 227: 107-121. doi: 10.1016/j.lithos.2015.03.024
    [30]
    Çimen O, Kuebler C, Monaco B, et al. Boron, carbon, oxygen and radiogenic isotope investigation of carbonatite from the Miaoya complex, Central China: Evidences for late-stage REE hydrothermal event and mantle source heterogeneity[J]. Lithos, 2018, 322: 225-237. doi: 10.1016/j.lithos.2018.10.018
    [31]
    应元灿. 湖北庙垭碳酸岩杂岩体年代学和地球化学特征及成岩成矿过程[D]. 北京: 中国地质大学(北京), 2018.

    Ying Y C. Geochronology and geochemistry of the Miaoya carbonatite complex (Hubei Province): Implications for petrogenesis and metallogenesis[D]. Beijing: China University of Geosciences(Beijing), 2018(in Chinese with English abstract).
    [32]
    Su J H, Zhao X F, Li X C, et al. Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: Implications for the origin of REE-Nb-enriched carbonatite[J]. Ore Geology Reviews, 2019, 113: 103101. doi: 10.1016/j.oregeorev.2019.103101
    [33]
    吴敏, 许成, 王林均, 等. 庙垭碳酸岩型稀土矿床成矿过程初探[J]. 矿物学报, 2011, 31(3): 478-484. doi: 10.16461/j.cnki.1000-4734.2011.03.039

    Wu M, Xu C, Wang L J, et al. A preliminary study on genesis of REE deposit in Miaoya[J]. Acta Mineralogica Sinica, 2011, 31(3): 478-484(in Chinese with English abstract). doi: 10.16461/j.cnki.1000-4734.2011.03.039
    [34]
    Thirlwall M F. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis[J]. Chemical Geology: Isotope Geoscience Section, 1991, 94(2): 85-104. doi: 10.1016/0168-9622(91)90002-E
    [35]
    Li J, Tang S, Zhu X, et al. Production and certification of the reference material GSB 04-3258-2015 as a143Nd/144Nd isotope ratio reference[J]. Geostandards and Geoanalytical Research, 2017, 41(2): 255-262. doi: 10.1111/ggr.12151
    [36]
    Budzyń B, Sláma J, Corfu F, et al. TS-Mnz: A new monazite age reference material for U-Th-Pb microanalysis[J]. Chemical Geology, 2021, 572: 120195. doi: 10.1016/j.chemgeo.2021.120195
    [37]
    Gonçalves G O, Lana C, Scholz R, et al. An assessment of monazite from the Itambé pegmatite district for use as U-Pb isotope reference material for microanalysis and implications for the origin of the "Moacyr" monazite[J]. Chemical Geology, 2016, 424: 30-50.
    [38]
    Liu Y, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
    [39]
    Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
    [40]
    Ludwig K R. A geochronological toolkit for Microsoft Excel[R]. Berkeley: Berkeley Geochronology Center Special Publication, 2012.
    [41]
    Paton C, Hellstrom J, Paul B, et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518.
    [42]
    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
    [43]
    许成, 黄智龙, 穆肇南, 等. 碳酸岩Sr、Nd、Pb同位素地球化学研究评述[J]. 矿物岩石地球化学通报, 2004, 23(4): 336-343. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200404011.htm

    Xu C, Huang Z L, Mu Z N, et al. Sr-Nd-Pb isotopic geochemistry of carbonatites: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(4): 336-343(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200404011.htm
    [44]
    Ying Y C, Chen W, Chakhmouradian A R, et al. Textural and compositional evolution of niobium minerals in the Miaoya carbonatite-hosted REE-Nb deposit from the South Qinling Orogen of Central China[J]. Mineralium Deposita, 2022: 1-24.
    [45]
    Ma R L, Chen W T, Zhang W, et al. Hydrothermal upgrading as an important tool for the REE mineralization in the Miaoya carbonatite-syenite complex, Central China[J]. American Mineralogist: Journal of Earth and Planetary Materials, 2021, 106(10): 1690-1703.
    [46]
    汪程远. 阳原碳酸岩和其中捕掳晶的地球化学研究及其对华北北缘下地壳演化的启示[D]. 武汉: 中国地质大学(武汉), 2020.

    Wang C Y. Geochemistry of the Yangyuan carbonatites and xenocrysts therein and its implication for the evolution of lower crust beneath the northern North China[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract).
    [47]
    Ying Y C, Chen W, Simonetti A, et al. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China)[J]. Geochimica et Cosmochimica Acta, 2020, 280: 340-359.
    [48]
    Demény A, Ahijado A, Casillas R, et al. Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H isotope study[J]. Lithos, 1998, 44(3/4): 101-115.
    [49]
    Turner S, Hawkesworth C, Rogers N, et al. 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc[J]. Geochimica et Cosmochimica Acta, 1997, 61(22): 4855-4884.
    [50]
    Elburg M A, Van Bergen M, Hoogewerff J, et al. Geochemical trends across an arc-continent collision zone: Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia[J]. Geochimica et Cosmochimica Acta, 2002, 66(15): 2771-2789.
    [51]
    Pearce J A, Stern R J. Origin of back-arc basin magmas: Trace element and isotope perspectives[J]. Geophysical Monograph-American Geophysical Union, 2006, 166: 63.
    [52]
    赖绍聪, 张国伟, 董云鹏, 等. 秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布[J]. 中国科学: 地球科学, 2003, 33(12): 1174-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312005.htm

    Lai S C, Zhang G W, Dong Y P, et al. Nature and spatial and temporal distribution of ophiolites and related volcanic rocks in the Qinling-Dabie Mianliu tectonic belt[J]. Science of China: Earth Sciences, 2003, 33(12): 1174-1183(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312005.htm
    [53]
    张国伟, 董云鹏, 赖绍聪, 等. 秦岭-大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学: 地球科学, 2003, 33(12): 1121-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312000.htm

    Zhang G W, Dong Y P, Lai S C, et al. The Mianliu tectonic belt and the Mianliu suture zone on the southern margin of the Qinling-Dabie orogenic belt[J]. Science of China: Earth Sciences, 2003, 33(12): 1121-1135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312000.htm
    [54]
    Walter B F, Giebel J, Marlow A G, et al. The Kiesh he carbonatites of southwestern Namibia-the post-magmatic role of silicate xenoliths on REE mobilisation[J]. Communications of the Geological Survey of Namibia, 2022, 25: 1-31.
    [55]
    Walter B F, Giebel R J, Steele-MacInnis M, et al. Fluids associated with carbonatitic magmatism: A critical review and implications for carbonatite magma ascent[J]. Earth-Science Reviews, 2021, 215: 103509.
    [56]
    Giebel R J, Walter B F, Marks M A W, et al. Wall rock contamination and mineralogical modifications in carbonatite dykes of the Palabora Complex, South Africa[J/OL]. (2021-09-16)[2022-09-12]. https://www.researchgate.net/publication/361745567.
    [57]
    Keppler H, Wyllie P J. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes[J]. Nature, 1990, 348: 531-533.
    [58]
    Migdisov A, Williams-Jones A E, Wagner T. An experimental study of the solubility and speciation of the rare earth elements (Ⅲ) in fluoride-and chloride bearing aqueous solutions at temperatures up to 300℃[J]. Geochimica Cosmochim, Acta, 2009, 73: 7087-7109.
    [59]
    Migdisov A, Williams-Jones A E, Brugger J, et al. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations[J]. Chemical Geology, 2016, 439: 13-42.
    [60]
    Zaraisky G P, Korzhinskaya V, Kotova N. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 2010, 99(3): 287-300.
    [61]
    Cui H, Zhong R, Xie Y, et al. Forming sulfate and REE-rich fluids in the presence of quartz[J]. Geology, 2020, 48(2): 145-148.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(401) PDF Downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return