Volume 42 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Wang Jigang, Fang Mingsong, Chen Gang, Hu Cheng. Influence of the fractures roughness of rock on fluid flow by the lattice Boltzmann method[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 279-287. doi: 10.19509/j.cnki.dzkq.tb20220190
Citation: Wang Jigang, Fang Mingsong, Chen Gang, Hu Cheng. Influence of the fractures roughness of rock on fluid flow by the lattice Boltzmann method[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 279-287. doi: 10.19509/j.cnki.dzkq.tb20220190

Influence of the fractures roughness of rock on fluid flow by the lattice Boltzmann method

doi: 10.19509/j.cnki.dzkq.tb20220190
  • Received Date: 29 Apr 2022
  • Accepted Date: 31 Aug 2022
  • Rev Recd Date: 16 Aug 2022
  • Objective

    The morphological structure of the fractures in the rock mass is complex, and the fissures rough characteristics of the rock have a great influence on the permeability of the fractures. The current traditional numerical simulation software is mainly based on the macroscopic evaluation of equivalent continuous media, which cannot simulate the mesoscopic fluid flow characteristics within the tiny structure of the fracture. Although there exist models for assessing the permeability of rough fractures considering fracture roughness characteristics, it lacks physical meaning and has limitations in taking standard deviation of the profile height of rough fractures as the quantitative representation of rough characteristics.

    Methods

    Firstly, the W-M (Weierstrass-Mandelbrot) function was applied to construct a numerical model of a two-dimensional rough single fracture with different fractal dimensions. Secondly, the simulation of fluid flow at the mesoscopic scale was realized by programming based on the lattice Boltzmann method theory and analysed by combining the cubic law formulation with the value of standard deviation of the fracture profile height as a quantitative characterization of roughness.

    Results

    The results show that the cubic law formula using standard deviation value of the fracture profile height as a quantitative characterization of the roughness feature is inadequate. It is feasible to use the fractal dimension as a local modified cubic law formulation for the quantization of rough features.

    Conclusion

    The study of rock fracture fluid flow has important engineering practical significance for groundwater pollution control and groundwater resource assessment.

     

  • loading
  • [1]
    Lomize G M. Flow in fractured rocks[M]. Moscow: Gesenergoizdat, 1951: 127-129.
    [2]
    葛洪魁, 申颍浩, 宋岩, 等. 页岩纳米孔隙气体流动的滑脱效应[J]. 天然气工业, 2014, 34(7): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201407012.htm

    Ge H K, Shen Y H, Song Y, et al. Slippage effect of gas flow in shale nano-pores[J]. Natural Gas Industry, 2014, 34(7): 46-54(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201407012.htm
    [3]
    郭保华, 田采霞. 岩石单裂隙水力特性试验研究进展[J]. 河南理工大学学报: 自然科学版, 2009, 28(1): 39-44. doi: 10.3969/j.issn.1673-9787.2009.01.008

    Guo B H, Tian C X. Experimental research progress on hydraulic characteristics of rock single fracture[J]. Journal of Henan Polytechnic University: Natural Science Edition, 2009, 28(1): 39-44(in Chinese with English abstract). doi: 10.3969/j.issn.1673-9787.2009.01.008
    [4]
    耿克勤, 陈凤翔, 刘光廷, 等. 岩体裂隙渗流水力特性的实验研究[J]. 清华大学学报: 自然科学版, 1996, 36(1): 102-106. doi: 10.3321/j.issn:1000-0054.1996.01.008

    Geng K Q, Chen F X, Liu G T, et al. Experimental study on seepage hydraulic characteristics of rock mass fracture[J]. Journal of Tsinghua University: Science and Technology Edition, 1996, 36(1): 102-106(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0054.1996.01.008
    [5]
    宋羿. 分叉-交叉裂隙中优势流及示踪试验与模拟研究[D]. 合肥: 合肥工业大学, 2019.

    Song Y. Experimental and simulation study on dominant flow and tracer in bifurcation-cross fracture[D]. Hefei: Hefei University of Technology, 2019(in Chinese with English abstract).
    [6]
    许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003, 34(3): 74-79. doi: 10.3321/j.issn:0559-9350.2003.03.014

    Xu G X, Zhang Y X, Ha Q L. Super-cubic and sub-cubic law of rough fracture seepage and its experimental study[J]. Journal of Hydraulic Engineering, 2003, 34(3): 74-79(in Chinese with English abstract). doi: 10.3321/j.issn:0559-9350.2003.03.014
    [7]
    Dou Z, Chen Z, Zhou Z, et al. Influence of eddies on conservative solute transport through a 2D single self-affine fracture[J]. International Journal of Heat and Mass Transfer, 2018, 121: 597-606. doi: 10.1016/j.ijheatmasstransfer.2018.01.037
    [8]
    Lee S H, Yeo I W, Lee K K, et al. Tail shortening with developing eddies in a rough-walled rock fracture[J]. Geophysical Research Letters, 2015, 42(15): 6340-6347. doi: 10.1002/2015GL065116
    [9]
    Lee S H, Yeo I W, Lee K K, et al. The role of eddies in solute transport and recovery in rock fractures: Implication for groundwater remediation[J]. Hydrological Processes, 2017, 31(20): 3580-3587. doi: 10.1002/hyp.11283
    [10]
    Louis C. A study of groundwater flow in jointed rock and its influence on the stability of rock masses[M]. London: Imperial College of Science and Technology, 1969.
    [11]
    Mourzenko V V, Thovert J F, Adler P M. Conductivity and transmissivity of a single fracture[J]. Transport in Porous Media, 2018, 123(2): 235-256. doi: 10.1007/s11242-018-1037-y
    [12]
    Chen Y F, Zhou J Q, Hu S H, et al. Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures[J]. Journal of Hydrology, 2015, 529: 993-1006. doi: 10.1016/j.jhydrol.2015.09.021
    [13]
    Poon C Y, Sayles R S, Jones T A. Surface measurement and fractal characterization of naturally fractured rocks[J]. Journal of Physics D Appli-ed Physics, 2000, 25(8): 1269-1275.
    [14]
    Brown S R, Scholz C H. Broad bandwidth study of the topography of natural rock surfaces[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B14): 12575-12582. doi: 10.1029/JB090iB14p12575
    [15]
    Brown S R. Fluid flow through rock joints: The effect of surfaceroughness[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B2): 1337-1347. doi: 10.1029/JB092iB02p01337
    [16]
    Odling N E. Natural fracture profiles, fractal dimension and joint roughness coefficients[J]. Rock Mechanics and Rock Engineering, 1994, 27(3): 135-153. doi: 10.1007/BF01020307
    [17]
    Keller K, Bonner B P. Automatic, digital system for profiling roughsurfaces[J]. Review of Scientific Instruments, 1985, 56(2): 330-331. doi: 10.1063/1.1138299
    [18]
    Brown S R, Scholz C H. Broad bandwidth study of the topography of natural rock surfaces[J]. Journal of Geophysical Research, 1985, 90(B14): 12575. doi: 10.1029/JB090iB14p12575
    [19]
    Schmittbuhl J, Steyer A, Jouniaux L, et al. Fracture morphology and viscous transport[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 422-430. doi: 10.1016/j.ijrmms.2007.07.007
    [20]
    Chen Y D, Liang W G, Lian H J, et al. Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 121-140. doi: 10.1016/j.ijrmms.2017.07.003
    [21]
    Jin Y, Dong J B, Zhang X Y, et al. Scale and size effects on fluid flow through self-affine rough fractures[J]. International Journal of Heat and Mass Transfer, 2017, 105: 443-451. doi: 10.1016/j.ijheatmasstransfer.2016.10.010
    [22]
    Wang L, Cardenas M B. Development of an empirical model relating permeability and specific stiffness for rough fractures from numerical deformation experiments[J]. Journal of Geophysical Research-Solid Earth, 2016, 121(7): 4977-4989. doi: 10.1002/2016JB013004
    [23]
    Wang M, Chen Y F, Ma G W, et al. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmannsimulations[J]. Advances in Water Resources, 2016, 96: 373-388. doi: 10.1016/j.advwatres.2016.08.006
    [24]
    Guo Z L, Shi B C, Wang N C. Lattice BGK model for incompressible Navier-Stokes equation[J]. Journal of Computational Physics, 2000, 165(1): 288-306. doi: 10.1006/jcph.2000.6616
    [25]
    Witherspoon P A, Wang J S Y, Iwai K, et al. Validity of Cubic Law for fluid flow in a deformable rockfracture[J]. Water Resources Research, 1980, 16(6): 1016-1024. doi: 10.1029/WR016i006p01016
    [26]
    Renshaw C E. On the relationship between mechanical and hydraulic apertures in rough-walled fractures[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B12): 24629-24636. doi: 10.1029/95JB02159
    [27]
    谢和平, 于广明, 杨伦, 等. 采动岩体分形裂隙网络研究[J]. 岩石力学与工程学报, 1999, 18(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.006.htm

    Xie H P, Yu G M, Yang L, et al. Study on fractal fracture network of mining-induced rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 29-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.006.htm
    [28]
    张永波, 靳钟铭, 刘秀英. 采动岩体裂隙分形相关规律的实验研究[J]. 岩石力学与工程学报, 2004, 23(20): 3426-3429. doi: 10.3321/j.issn:1000-6915.2004.20.006

    Zhang Y B, Jin Z M, Liu X Y. Experimental study on fractal correlation of mining-induced rock fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3426-3429(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.20.006
    [29]
    杨庆, 娄峰, 栾茂田. 岩体断裂面分维数测量精度的改进方法[J]. 岩石力学与工程学报, 2003, 22(2): 246-249. doi: 10.3321/j.issn:1000-6915.2003.02.016

    Yang Q, Lou F, Luan M T. An improved method for measuring accuracy of tractal dimension of rock fracture surface[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 246-249(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2003.02.016
    [30]
    冯增朝, 赵阳升, 文再明. 岩体裂缝面数量三维分形分布规律研究[J]. 岩石力学与工程学报, 2005, 24(4): 601-609. doi: 10.3321/j.issn:1000-6915.2005.04.010

    Feng Z C, Zhao Y S, Wen Z M. Study on three-dimensional fractal distribution of fracture surface number in rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 601-609(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.04.010
    [31]
    朱忠谦, 张啸枫, 张承泽, 等. 裂缝-孔隙模型中气水两相分形渗流实验和数学模型建立[J]. 地质科技情报, 2014, 33(4): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404014.htm

    Zhu Z Q, Zhang X F, Zhang C Z, et al. Experimental study and mathematical model establishment of gas-water two-phase fractal seepage in fracture-pore model[J]. Geological Science and Technology Information, 2014, 33(4): 86-90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404014.htm
    [32]
    钟嘉高, 梁杏, 任志刚. 岩体裂隙等效水力隙宽的统计确定方法[J]. 地质科技情报, 2007, 26(4): 103-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200704020.htm

    Zhong J G, Liang X, Ren Z G. Statistical determination method of equivalent hydraulic gap width of rock mass fracture[J]. Geological Science and Technology Information, 2007, 26(4): 103-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200704020.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(406) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return