Volume 42 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Tao Wenfang, Ge Jiawang, Lei Yongchang, Li Xubiao, Zhu Xiaomin. Depositional characteristics of a relay ramp controlled braided deltaic system: A case study in the Eocene Huizhou Sag, Pearl River Mouth Basin, China[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 103-114. doi: 10.19509/j.cnki.dzkq.tb20220202
Citation: Tao Wenfang, Ge Jiawang, Lei Yongchang, Li Xubiao, Zhu Xiaomin. Depositional characteristics of a relay ramp controlled braided deltaic system: A case study in the Eocene Huizhou Sag, Pearl River Mouth Basin, China[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 103-114. doi: 10.19509/j.cnki.dzkq.tb20220202

Depositional characteristics of a relay ramp controlled braided deltaic system: A case study in the Eocene Huizhou Sag, Pearl River Mouth Basin, China

doi: 10.19509/j.cnki.dzkq.tb20220202
  • Received Date: 09 May 2022
  • Accepted Date: 03 Oct 2022
  • Rev Recd Date: 29 Aug 2022
  • Objective

    Tectonic transfer zones (or named as relay ramps) can have a profound impact on the drainages catchment, sediment dispersal and reservoirs distribution patterns; they are also important for hydrocarbon transport and accumulation processes. It is a hot object of current research interest to sedimentary geologists as well as petroleum geologists. A few different types of tectonic transfer zones are observed in the Eocene Huizhou Sag, the Pearl River Mouth Basin, South China Sea. The HZ25 area linking the Huizhou 26 and Xijiang 30 Sags is a typical overlapping transfer zone that controls the development of a large set of braided-deltaic system.

    Methods

    Based on newly acquired and processed high-quality 3D seismic data, three drilling logs, cores, and thin slices are utilized to discuss the characteristics of the relay ramp-controlled braided deltaic deposits and reservoirs in this paper.

    Results

    The results show that the Late Eocene climate was relatively hot and humid, and thus, abundant terrestrial clastic are collected and transported from the Dongsha Uplift source area via the HZ25 relay ramp routing system. Subsequently, a set of thick-bedded braided-delta deposits was deposited in the HZ26 Sag. The braided deltaic sandstones are generally coarse-grained with relatively poor sorting and roundness. It is dominated by mainly lithic sandstone. The particle size probability curve and C-M diagram display typical multiple traction flow characteristics. Large-scale cross bedding, high-angle inclined bedding and extensive scour surfaces in multistory fining-upwards cycles are common in core observations. It is implied that rich and hydrodynamic traction flow regimes are developed. The drainage dispersal pathways are redirected by the internal tectonic belts within the relay ramp, which are characterized by a large-scale but low-gradient (less than 3 degrees) physiographic slope. Strong hydrodynamic forces associated with facilitated deltaic drainage resulted in a high sand ratio of approximately 52% on average. The maximum advancement of the braided deltaic system is approximately 8 km, and its lobe-like geometry is strictly reorganized by the special tectonic-geomorphic pattern of the relay ramp zone.

    Conclusion

    The frontal deposits of the braided deltaic system have relatively good sandstone sorting, and thus, the relevant deposits are characterized by a higher porosity than those observed in the braided-delta plain. The good stratigraphic-lithological traps controlled by the relay ramp coupled with the multiple stages of thick-bedded braided-deltaic deposits are most important in this study area, which could be selected as an exploration potential area in the future. Additionally, the braided deltaic deposits in the study area are mainly dominated by low-porosity and low-permeability reservoirs. The reservoir in the frontal area of the braided deltaic deposits could be a priority exploration and evaluation target for petroleum resources due to its low mud content and miscellaneous bases, moderate sorting and good pore connectivity.

     

  • loading
  • [1]
    Dahlstrom C D A. Structural geology in the eastern margin of the Canadian Rocky Mountain[J]. Bulletin of Canadian Petroleum Geology, 1970, 18(3): 332-406.
    [2]
    Morley C K, Nelson R A, Patton T L, at al. Transfer zones in the East African Fift system and their relevance to hydrocarbon exploration in rifts[J]. AAPG Bulletin, 1990, 74(8): 1234-1253.
    [3]
    Gawthorpe R L, Hurst J M. Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy[J]. Journal of the Geological Society, 1993, 150(6): 1137-1152. doi: 10.1144/gsjgs.150.6.1137
    [4]
    漆家福. 裂陷盆地中的构造变换带及其石油地质意义[J]. 海相油气地质, 2007, 12(4): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200704009.htm

    Qi J F. Structural transfer zones and significance for hydrocarbon accumulation in rifting basins[J]. Marine Origin Petroleum Geology, 2007, 12(4): 43-50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200704009.htm
    [5]
    梁富康, 于兴河, 慕小水, 等. 东濮凹陷南部沙三中段构造调节带对沉积体系的控制作用[J]. 现代地质, 2011, 25(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201101007.htm

    Liang F K, Yu X H, Mu X S, et al. Accommodation zones and their controls on depositional system in the middle of Third Member of Shahejie Formation, south of Dongpu Sag[J]. Geoscience, 2011, 25(1): 55-61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201101007.htm
    [6]
    白小鸟, 焦养泉. 伸展盆地的转换斜坡: 控制储层发育与烃类运聚的重要构造单元[J]. 地质科技情报, 2011, 30(6): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201106006.htm

    Bai X N, Jiao Y Q. Relay ramp in extensional basins: An important structure of reservoir deposition and hydrocarbon migration or accumulation[J]. Geological Science and Technology Information, 2011, 30(6): 44-54(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201106006.htm
    [7]
    Peacock D C P. Propagation, interaction and linkage in normal fault systems[J]. Earth-Science Reviws, 2002, 58: 121-142. doi: 10.1016/S0012-8252(01)00085-X
    [8]
    Trudgill B D. Structural controls on drainage development in the Canyonlands grabens of southeast Utah[J]. AAPG Bulletin, 2002, 86(6): 1095-1112.
    [9]
    Young M J, Gawthorpe R L, Sharp I R. Sedimentology and sequence stratigraphy of a transfer zone coarse-grained delta, Miocene Suez Rift, Egypt[J]. Sedimentology, 2000, 47(6): 1081-1104. doi: 10.1046/j.1365-3091.2000.00342.x
    [10]
    Young M J, Gawthorpe R L, Sharp I R. Architecture and evolution of syn-rift clastic depositional systems towards the tip of a major fault segment, Suez Rift, Egypt[J]. Basin Rearch, 2002, 14(1): 1-23. doi: 10.1046/j.1365-2117.2002.00162.x
    [11]
    Sohn Y K, Son M. Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang Basin, SE Korea[J]. Sedimentology, 2004, 51(6): 1387-1408. doi: 10.1111/j.1365-3091.2004.00679.x
    [12]
    Moustafa A R. Controls on the geometry of transfer zones in the Suez Rift and northwest Red Sea: Implications for the structural geometry of rift systems[J]. AAPG Bulletin, 2002, 86(6): 979-1002.
    [13]
    Oftedal B T, Andresen A, Muller R. Early Triassic syn-rift sedimentation at hold with hope, Northeast Greenland[J]. Onshore-Offshore Relationships on the North Atlantic Margin, 2005, 12: 191-206.
    [14]
    Gupta S, Underhill J R, Sharp I R, et al. Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt[J]. Basin Research, 1999, 11(2): 167-189. doi: 10.1046/j.1365-2117.1999.00300.x
    [15]
    Rotevatn A, Tveranger J, Howell J A, et al. Dynamic investigation of the effect of a relay ramp on simulated fluid flow: Geocellular modeling of the Delicate Arch Ramp, Utah[J]. Petroleum Geoscience, 2009, 15(1): 45-58. doi: 10.1144/1354-079309-779
    [16]
    王向东, 王任, 石万忠, 等. 中国东部典型裂谷盆地构造活动特征及演化: 以松辽盆地孤店断陷为例[J]. 地质科技通报, 2022, 41(3): 85-95. doi: 10.19509/j.cnki.dzkq.2022.0089

    Wang X D, Wang R, Shi W Z, et al. Tectonic characteristics and evolution of typical rift basins in eastern China: A case study in the Gudian area, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 85-95(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0089
    [17]
    葛家旺, 朱筱敏, 雷永昌, 等. 多幕裂陷盆地构造-沉积响应及陆丰凹陷实例分析[J]. 地学前缘, 2021, 28(1): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101008.htm

    Ge J W, Zhu X M, Lei Y C, et al. Tectono-sedimentary development of multiphase rift basins: An example of the Lufeng Depression[J]. Earth Science Frontiers, 2021, 28(1): 77-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101008.htm
    [18]
    杨明慧. 渤海湾盆地变换构造特征及其成藏意义[J]. 石油学报, 2009, 30(6): 816-823. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200906005.htm

    Yang M H. Transfer structure and its relation to hydrocarbon exploration in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2009, 30(6): 816-823(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200906005.htm
    [19]
    舒誉, 施和生, 杜家元, 等. 珠一坳陷古近系油气成藏特征及勘探方向[J]. 中国海上油气, 2014, 26(3): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403006.htm

    Shu Y, Shi H S, Du J Y, et al. Paleogene characteristics in hydrocarbon accumulation and exploration direction in Zhu I Depression[J]. China Offshore Oil and Gas, 2014, 26(3): 37-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403006.htm
    [20]
    施和生, 于水明, 梅廉夫, 等. 珠江口盆地惠州凹陷古近纪幕式裂陷特征[J]. 天然气工业, 2009, 29(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200901012.htm

    Shi H S, Yu S M, Mei L F, et al. Features of Paleogene episodic rifting in Huizhou fault depression in the Pearl River Mouth Basin[J]. Natural Gas Industry, 2009, 29(1): 35-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200901012.htm
    [21]
    葛家旺, 朱筱敏, 陶文芳, 等. 惠州凹陷HZ25转换带构造特征与成藏条件[J]. 西南石油大学学报: 自然科学版, 2017, 39(5): 19-30. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201705003.htm

    Ge J W, Zhu X M, Tao W F, et al. The tectonic characteristics and analysis of hydrocarbon accumulation conditions in HZ25 transfer zone in Huizhou Sag, Pearl River Mouth Basin[J]. Journal of Southwest Petroleum University: Science and Technology Edition, 2017, 39(5): 19-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201705003.htm
    [22]
    施和生, 何敏, 张丽丽, 等. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气, 2014, 26(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403002.htm

    Shi H S, He M, Zhang L L, et al. Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2014, 26(3): 11-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403002.htm
    [23]
    李扬帆, 程超, 何贤科, 等. 惠州凹陷古近系优质烃源岩评价方法研究[J]. 海洋石油, 2015, 35(2): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201502013.htm

    Li Y F, Cheng C, He X K, et al. Evaluation methods for Paleogene source rocks in Huizhou Sag[J]. Offshore Oil, 2015, 35(2): 40-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201502013.htm
    [24]
    张丽丽, 舒誉, 蔡国富, 等. 珠江口盆地东部始新世-渐新世沉积环境演变及对烃源条件的影响[J]. 石油学报, 2019, 40(增刊1): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1013.htm

    Zhang L L, Shu Y, Cai G F, et al. Eocene-Oligocene sedimentary environment evolution and its impact on hydrocarbon source conditions in eastern Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1): 153-165(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1013.htm
    [25]
    李振雄. 珠江口盆地LF13-2-1井始新统孢粉组合[J]. 中国海上油气, 1998, 12(3): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199803006.htm

    Li Z X. Eocene Palynology of Well LF13-2-1 in Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 1998, 12(3): 168-173(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199803006.htm
    [26]
    李洪博. 珠江口盆地惠州凹陷及东沙隆起结构构造特征、演化及其与油气成藏关系讨论[D]. 武汉: 中国地质大学, 2010: 41-54.

    Li H B. The features of construct and structure and the discussion of relationship between evolution with hydrocarbon reservoiring in Huizhou Depression and Dongsha Massif of Pearl River Mouth Basin[D]. Wuhan: China University of Geoscience, 2010: 41-54(in Chinese with English abstract).
    [27]
    Zhu H T, Yang X H, Liu K, et al. Seismic-based sediment provenance analysis in continental lacustrine rift basins: An example from the Bohai Bay Basin, China[J]. AAPG Bulletin, 2014, 98(10): 1995-2018.
    [28]
    梁杰, 刘杰, 牛胜利, 等. 珠江口盆地惠州25转换带文五段低位体系域源-渠-汇耦合关系[J]. 沉积学报, 2022, 40(6): 1451-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202206001.htm

    Liang J, Liu J, Niu S L, et al. Depostional model an source-to-sink characteristics of the lowstand system tract in the 5th member of the Wenchang Formation, Huizhou 25 transfer zone[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1451-1460(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202206001.htm
    [29]
    葛家旺, 朱筱敏, 潘荣, 等. 珠江口盆地惠州凹陷文昌组砂岩孔隙定量演化模式: 以HZ-A地区辫状河三角洲储层为例[J]. 沉积学报, 2015, 33(1): 183-193. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501019.htm

    Ge J W, Zhu X N, Pan R, et al. A quantitative porosity evolution model of sandstone for Wenchang Formation in Huizhou Depression, Pearl River Mouth Basin: A case study for braided fluvial delta reservoir of HZ-A area[J]. Acta Sedimentologica Sinica, 2015, 33(1): 183-193(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501019.htm
    [30]
    葛家旺, 秦成岗, 朱筱敏, 等. 惠州凹陷HZ25-7构造带文昌组低孔低渗砂岩储层特征和成因机理[J]. 岩性油气藏, 2014, 26(4): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201404007.htm

    Ge J W, Qin C G, Zhu X M, et al. Characteristics and origin of low porosity and low permeability sandstone reservoir of Wenchang Formation in HZ25-7 structural belt of Huizhou Depression[J]. Lithologic Reservoirs, 2014, 26(4): 36-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201404007.htm
    [31]
    姚文礼. 四川盆地须家河组致密砂岩物源体系的控储作用[J]. 地质科技通报, 2021, 40(5): 223-230. doi: 10.19509/j.cnki.dzkq.2021.0036

    Yao W L. Reservoir control of tight sandstone provenance system in Xujiahe Formation, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 223-230(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0036
    [32]
    徐国盛, 崔恒远, 刘勇, 等. 东海盆地西湖凹陷古近系花港组砂岩储层致密化与油气充注关系[J]. 地质科技通报, 2020, 39(3): 20-29. doi: 10.19509/j.cnki.dzkq.2020.0303

    Xu G S, Cui H Y, Liu Y, et al. Relationship between sandstone reservoirs densification and hydrocarbon charging in the Paleogene Huagang Formation of Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 20-29(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0303
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(345) PDF Downloads(139) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return