Volume 42 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Zhan Zhuanying, Ni Jun. Dispersion potential of asphaltene in live oil by nanoparticles[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 86-94. doi: 10.19509/j.cnki.dzkq.tb20220226
Citation: Zhan Zhuanying, Ni Jun. Dispersion potential of asphaltene in live oil by nanoparticles[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 86-94. doi: 10.19509/j.cnki.dzkq.tb20220226

Dispersion potential of asphaltene in live oil by nanoparticles

doi: 10.19509/j.cnki.dzkq.tb20220226
  • Received Date: 19 May 2022
  • Accepted Date: 14 Sep 2022
  • Rev Recd Date: 11 Sep 2022
  • Objective

    In order to clarify the effect and mechanism of nanoparticles on inhibiting asphaltene precipitation in formation live oil formation under high temperature and high pressure.

    Methods

    In this study, by carrying out high-temperature and high-pressure solid particle detection experiment, the aggregation and precipitation characteristics of asphaltene in formation live oil under the action of SiO2 and Co3O4 nanoparticles were studied by means of laser detection, high-pressure microscopy and high-temperature and high-pressure filtration. Combined with the electron microscope scanning and thermogravimetric analysis experiments, the mechanism of nanoparticles inhibiting asphaltene precipitation was revealed.

    Results

    The results show that the initial pressure of asphaltene precipitation (AOP) decreases from 59.2 MPa to 53.4 MPa after adding SiO2 nanoparticles to the crude oil of the target reservoir.When the pressure was reduced to 35 MPa, the average particle size of asphaltene particles decreases from 8.82 μm to 5.53 μm, and the proportion of precipitation decreased from 66.4% to 46.4%. After adding Co3O4 nanoparticles, there is no obvious asphaltene precipitation above the bubble point pressure.The average particle size of asphaltene particles is only 1.65 μm under 35 MPa pressure, and the proportion of precipitation is only 13.6%. Nanoparticles can inhibit the precipitation of asphaltene molecules, slow down the aggregation rate of asphaltene particles, and reduce AOP and precipitation. Compared with SiO2, Co3O4 nanoparticles have higher asphaltene adsorption affinity and better inhibition effect.

    Conclusion

    The research results provide a basis for preventing asphaltene deposition and improving deposition damage.

     

  • loading
  • [1]
    李新文, 张国威. 沥青质沉积对原油渗流特征的影响[J]. 地质科技通报, 2021, 40(6): 15-23. doi: 10.19509/j.cnki.dzkq.2021.0602

    Li X W, Zhang G W. Influence of asphaltene deposition on oil seepage characteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 15-23(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0602
    [2]
    Fakher S, Khlaifat A, Hossain M E, et al. A comprehensive review of sucker rod pumps' components, diagnostics, mathematical models, and common failures and mitigations[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(10): 3815-3839. doi: 10.1007/s13202-021-01270-7
    [3]
    雷浩. 低渗储层CO2驱油过程中沉淀规律及防治对策研究[D]. 北京: 中国石油大学(北京), 2017.

    Lei H. Deposition mechanisms and reservoir protection countermeasures of a low-permeability formation in CO2 flooding process[D]. Beijing: China University of Petroleum(Beijing), 2017(in Chinese with English abstract).
    [4]
    王志坚. 深层-超深层异常高压油藏工艺技术对策[J]. 油气地质与采收率, 2020, 27(5): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htm

    Wang Z J. Technological strategies for deep and ultra-deep reservoirs with abnormally high pressure[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 126-132(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htm
    [5]
    刘磊, 曹畅, 程汝镇, 等. 顺北沥青质分子结构和析出沉积规律研究[J]. 复杂油气藏, 2020, 13(4): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202004020.htm

    Liu L, Cao C, Cheng R Z, et al. Study on molecular structure and precipitation rules of Shunbei asphaltenes[J]. Complex Hydrocarbon Reservoirs, 2020, 13(4): 86-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202004020.htm
    [6]
    王云飞, 魏建光. 减氧空气与轻质原油低温氧化反应特征[J]. 地质科技通报, 2023, 42(2): 207-213. doi: 10.19509/j.cnki.dzkq.2022.0181

    Wang Y F, Wei J G. Reaction characteristics of low temperature oxidation of light crude oil with disoxidation air[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 207-213(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0181
    [7]
    Kalantari F, Farahbod F. Mixing of crude oil with organic ZnO nano-particles from rice bran to improve physical properties of crude oil: A novel agent for enhanced oil recovery[J]. Natural Resources Research, 2019, 28(3): 1183-1196. doi: 10.1007/s11053-018-9443-y
    [8]
    叶航, 刘琦, 彭勃, 等. 纳米颗粒抑制CO2驱过程中沥青质沉积的研究进展[J]. 油气地质与采收率, 2020, 27(5): 86-94.

    Ye H, Liu Q, Peng B, et al. Inhibition of nanoparticles on asphaltene deposition during CO2 flooding: A review[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 86-94(in Chinese with English abstract).
    [9]
    Kazemzadeh Y, Eshraghi E, Kazemi K, et al. Behavior of asphaltene adsorption onto the metal xxide nanoparticle surface and its effect on heavy oil recovery[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 233-239.
    [10]
    Taborda E A, Franco C A, Lopera S H, et al. Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions[J]. Fuel, 2016, 184: 222-232. doi: 10.1016/j.fuel.2016.07.013
    [11]
    Shojaati F, Riazi M, Mousavi S H, et al. Experimental investigation of the inhibitory behavior of metal oxides nanoparticles on asphaltene precipitation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 99-110.
    [12]
    Alemi F M, Dehghani S A M, Rashidi A, et al. Potential application of Fe2O3 and functionalized SiO2 nanoparticles for inhibiting asphaltene precipitation in live oil at reservoir conditions[J]. Energy & Fuels, 2021, 35(7): 5908-5924.
    [13]
    Eskin D, Omid M, Kamran A, et al. Reservoir impairment by asphaltenes: A critical review[J]. The Canadian Journal of Chemical Engineering, 2016, 94(6): 1202-1217. doi: 10.1002/cjce.22476
    [14]
    Uetani T. Wettability alteration by asphaltene deposition: A field example[C]//Anon. Abu Dhabi International Petroleum Exhibition and Conference, 10-13 November. Abu Dhabi, UAE: Society of Petroleum Engineers, 2014.
    [15]
    Papadimitriou N I, Romanos G E, Charalambopoulou G C, et al. Experimental investigation of asphaltene deposition mechanism during oil flow in core samples[J]. Journal of Petroleum Science and Engineering, 2007, 57(3/4): 281-293.
    [16]
    郑希谭, 孙雯悦, 李实, 等. GB/T 26981-2011: 油气藏流体物性分析方法[S]. 北京: 石油工业出版社, 2010.

    Zheng X T, Sun W Y, Li S, et al. GB/T 26981-2011: Test method for reservoir fluid physical properties[S]. Beijing: Petroleum Industry Press, 2010(in Chinese).
    [17]
    王翠红, 罗爱兰, 王子军. NB/SH/T 0509-2010: 石油沥青质四组分测定方法[S]. 北京: 中国石化出版社, 2010.

    Wang C H, Luo A L, Wang Z J. NB/SH/T 0509-2010: Test method for separation of asphalt into four fractions[S]. Beijing: SINOPEC Press, 2010(in Chinese).
    [18]
    卢振东, 刘成林, 臧起彪, 等. 高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用: 以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2022, 41(3): 300-310. doi: 10.19509/j.cnki.dzkq.2021.0256

    Lu Z D, Liu C L, Zang Q B, et al. Application of high pressure mercury injection and nuclear magnetic resonance in analysis of the pore structure of dense sandstone: A case study of the Heshui area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 300-310(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0256
    [19]
    岳长涛, 李术元, 许心怡, 等. 宜宾地区页岩微孔特征及吸附解吸特性研究[J]. 西南石油大学学报: 自然科学版, 2018, 40(5): 84-94.

    Yue C T, Li S Y, Xu X Y, et al. Micropore characteristics and adsorption and desorption properties of shales in the Yibin region[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2018, 40(5): 84-94(in Chinese with English abstract).
    [20]
    Fard S R, Khadar R H. The effect of inhibitors asphaltene precipitation due to a natural depletion mechanism in crude oil[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2012, 34(20): 1868-1875. doi: 10.1080/15567036.2011.615003
    [21]
    Firoozinia H, Abad K F H, Varamesh A. A comprehensive experimental evaluation of asphaltene dispersants for injection under reservoir conditions[J]. Petroleum Science, 2016, 13(2): 280-291. doi: 10.1007/s12182-016-0078-5
    [22]
    Lyu C, Ning Z, Wang Q, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones[J]. Energy & Fuels, 2018, 32(2): 1395-1405.
    [23]
    Maity S K, Blanco E, Ancheyta J, et al. Early stage deactivation of heavy crude oil hydroprocessing Catalysts[J]. Fuel, 2012, 100: 17-23.
    [24]
    Hosseinpour N, Mortazavi Y, Bahramian A, et al. Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology[J]. Applied Catalysis A: General, 2014, 477: 159-171.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(241) PDF Downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return