Volume 42 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Chen Weiwei, Yang Fengli, Zhuang Yuan, Xu Mingchen, Hu Yuyang. On the reliability of drilling core reorientations using palaeomagnetic methods: A case study from the boreholes in the Tarim Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 266-280. doi: 10.19509/j.cnki.dzkq.tb20220255
Citation: Chen Weiwei, Yang Fengli, Zhuang Yuan, Xu Mingchen, Hu Yuyang. On the reliability of drilling core reorientations using palaeomagnetic methods: A case study from the boreholes in the Tarim Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 266-280. doi: 10.19509/j.cnki.dzkq.tb20220255

On the reliability of drilling core reorientations using palaeomagnetic methods: A case study from the boreholes in the Tarim Basin

doi: 10.19509/j.cnki.dzkq.tb20220255
  • Received Date: 09 May 2023
  • Accepted Date: 19 Jul 2023
  • Rev Recd Date: 28 Jun 2023
  • Objective

    This study explores the accuracy of drilling core reorientations by using remanent magnetization.

    Methods

    To this end, paleomagnetic analyses were carried out on 43 Silurian sandstone samples collected from five boreholes (TKQ101, SHUN9, TAT19, TZ18, and TS108)in the Tarim Basin. Meanwhile, rock magnetic measurements, scanning electron microscope (SEM) and energy dispersive spectral (EDS) observations were conducted on representative samples to identify the predominant magnetic carriers. Furthermore, the paleocurrent direction inferred from the corrected maximum magnetic susceptibility (Kmax)axis of the anisotropy of magnetic susceptibility (AMS) using remanent magnetization was analyzed.

    Results

    AMS results indicate a sedimentary fabric preserved in the studied drilling cores, suggesting their stratigraphy are overall horizontal.Rock magnetic results, SEM and EDS observations reveal that magnetite is the dominant magnetic carrier for the TKQ101 samples, with small amounts of goethite and hematite, while pyrrhotite and magnetite are the dominant magnetic carriers for the other samples. The demagnetization results indicate that the viscous remanent magnetization (VRM) acquired in the present geomagnetic field and the characteristic remanent magnetization(ChRM) of the Silurian formation can be isolated for the TKQ101 samples, where the original azimuth rotations (R, R') estimated by VRM and ChRM are consistent. Furthermore, the paleocurrent direction inferred from the corrected Kmax is supported by the geological evidence, suggesting a counterclockwise rotation of 258.0°-262.0°of the TKQ101 drilling cores. Only one remanence component was isolated for the majority (~90%) of samples from the other four boreholes, which is a superposition component of the VRM acquired in present geomagnetic field and the chemical remagnetization caused by fluid activities, such as oil-gas migration and accumulation, during the Himalayan period. Therefore, it is more reliable to reorient these drill cores by using the VRM component, with confirmation of the paleocurrent direction inferred by the corrected Kmax and geological evidence.

    Conclusion

    In summary, to restore the original orientations of these drilling cores, the following rotation angles are required: 258.0°-262.0° counterclockwise rotation for the TKQ101 drill cores; 148.1°, 221.2°, and 318.2° counterclockwise rotation for the 4th, 5th and 6th sections from the borehole SHUN9, respectively; 269.8° and 155.9° counterclockwise rotation for the sections 3 and 5 from the borehole TAT19, respectively; 239.3° and 256.6° counterclockwise rotation for drill cores from the boreholes TS108 and TZ18, respectively.

     

  • loading
  • [1]
    Van der Voo R, Watts D R. Paleomagnetic results from igneous and sedimentary rocks from the Michigan Basin borehole[J]. Journal of Geophysical Research, 1978, 83: 5844-5848. doi: 10.1029/JB083iB12p05844
    [2]
    吴光琳. 钻探定向岩心的用途和岩心定向技术的进展[J]. 西部探矿工程, 1992, 4(4): 6-10, 71.

    Wu G L. Core orientation and its progress[J]. West-China Exploration Engineering, 1992, 4(4): 6-10, 71(in Chinese with English abstract).
    [3]
    Lackie M A, Schmidt P W. Drill core orientation using palaeomagnetism[J]. Exploration Geophysics, 1993, 24: 609-614. doi: 10.1071/EG993609
    [4]
    Rolph T C, Shaw J, Harper T R, et al. Viscous remanent magnetization: A tool for orientation of drill cores[J]. Geological Society London Special Publications, 1995, 98(1): 239-243. doi: 10.1144/GSL.SP.1995.098.01.14
    [5]
    岳乐平, 王建其, 邸世祥, 等. 油气田钻井岩心及岩心裂缝方位确定的古地磁原理与方法[J]. 地球物理学进展, 1997, 12(3): 71-76.

    Yue L P, Wang J Q, Di S X, et al. The paleomagnetic principle and method applying to orientation of core and cracks in oil and gas field[J]. Progress in Geophysics, 1997, 12(3): 71-76(in Chinese with English abstract).
    [6]
    侯守信, 田国荣. 古地磁岩心定向及其在地应力测量上的应用[J]. 地质力学学报, 1999, 5(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX901.013.htm

    Hou S X, Tian G R. Palaeomgnetic orientation of cores and its applications for insitu stress measurements[J]. Journal of Geomechanics, 1999, 5(1): 90-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX901.013.htm
    [7]
    侯守信, 田国荣. 黏滞剩磁(VRM)岩心定向的应用[J]. 岩石力学与工程学报, 2000, 19(增刊1): 1128-1131.

    Hou S X, Tian G R. The application of viscous remanent magnetization in orientation determination by using drill cores[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 1128-1131(in Chinese with English abstract).
    [8]
    Aidona E, Kondopoulou D, Scholger R, et al. Palaeomagnetic investigations of sediments cores from Axios zone(N. Greece): Implications of low inclinations in the Aegean[J]. Eearth, 2008, 3(1): 7-18. doi: 10.5194/ee-3-7-2008
    [9]
    Rapalini A E, Luppo T, Llanos M P I, et al. Succesfull paleomagnetic azimuthal orientation of drill cores from a hydrocarbon source rock reservoir: The case of the Vaca Muerta Formation, Neuquen Basin, Argentina[J]. Latinmag Letters, 2013, 3: 1-5.
    [10]
    周亚楠, 程鑫, 马轮, 等. 确定地下埋藏砂体与裂缝空间方位的原理和方法[J]. 地球物理学进展, 2015, 30(3): 1243-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503033.htm

    Zhou Y N, Chen X, Ma L, et al. The principles and methods on determining spatial orientation of sandstones and fractures in subsurface reservoir[J]. Progress in Geophysics, 2015, 30(3): 1243-1250(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503033.htm
    [11]
    韦乐乐, 程鑫, 刘秀婷, 等. 钻井岩心裂缝重定向方法研究[J]. 地质学刊, 2015, 39(2): 318-321.

    Wei L L, Chen X, Liu X T, et al. A method of redirecting fractures in drilling cores[J]. Journal of Geology, 2015, 39(2): 318-321(in Chinese with English abstract).
    [12]
    韦乐乐. 鄂尔多斯盆地东南部延长组岩心裂缝重定向[J]. 地质科技情报, 2017, 36(3): 33-37.

    Wei L L. Redirecting core fracture of Yanchang Formation in the southeastern Ordos Basin[J]. Geological Science and Technology Information, 2017, 36(3): 33-37(in Chinese with English abstract).
    [13]
    葛坤朋, 谢基海, 应阳根, 等. 钻孔岩心重定向的古地磁学新方法及其在华南铀矿床岩心定向中的初步应用[J]. 地球物理学报, 2020, 63(8): 3037-3049.

    Ge K P, Xie J H, Ying Y G, et al. A new paleomagnetic method of borehole core reorientation and its preliminary applications in reorientation of cores of uranium deposits in southern China[J]. Chinese Journal of Geophysics, 2020, 63(8): 3037-3049(in Chinese with English abstract).
    [14]
    孟小红, 周海民. 冀东油田钻井岩心的磁学研究[J]. 地球物理学报, 1997, 40(6): 809-820.

    Meng X H, Zhou H M. Magnetic study of drill-cores in Jidong Oil Field[J]. Acta Geophysica Sinica, 1997, 40(6): 809-820(in Chinese with English abstract).
    [15]
    杨斌谊, 吴汉宁, 李学森, 等. 南泥湾油田钻井岩心古地磁学初步研究[J]. 石油与天然气地质, 2002, 23(4): 397-401.

    Yang B Y, Wu H N, Li X S, et al. Paleomagnetic research of drilling cores in Naniwan Oil Field[J]. Oil and Gas Geology, 2002, 23(4): 397-401(in Chinese with English abstract).
    [16]
    杨斌谊, 龚建军, 陈建军. 确定油田钻井岩心原始方位的古地磁学方法探讨[J]. 西北地质, 2003, 36(4): 79-83.

    Yang B Y, Gong J J, Chen J J. Paleomagnetism research on orientation of drilling cores in oil field[J]. Northwestern Geology, 2003, 36(4): 79-83(in Chinese with English abstract).
    [17]
    梁利平, 王海军, 程鑫, 等. 钻井岩心古水流方向确定方法和原理[J]. 地球物理学进展, 2012, 27(1): 370-375. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201201044.htm

    Liang L P, Wang H J, Cheng X, et al. Methods and principles to direction identify of the drilling core's paleocurrent[J]. Progress in Geophysics, 2012, 27(1): 370-375(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201201044.htm
    [18]
    刘秀婷, 韦乐乐, 周亚楠, 等. 磁组构分析岩心古水流方向原理与应用[J]. 西部探矿工程, 2014, 26(8): 86-89, 91.

    Liu X T, Wei L L, Zhou Y N, et al. The principle and application of magnetic fabric to paleocurrent estimation of drilling cores[J]. West-China Exploration Engineering, 2014, 26(8): 86-89, 91(in Chinese with English abstract).
    [19]
    刘秀婷, 韦乐乐, 苏海伦, 等. 利用古地磁学研究岩心古水流的方法与应用: 以延长油田西南部延长组为例[J]. 断块油气田, 2015, 22(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201501005.htm

    Liu X T, Wei L L, Su H L, et al. Method of paleomagnetism to study directions of core paleocurrent and its application: Taking Yanchang Formation in Southwest Yanchang Oilfield as an example[J]. Fault-Block Oil & Gas Field, 2015, 22(1): 21-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201501005.htm
    [20]
    杨振宇, Moreau M G. Montcornet钻孔岩心的古地磁研究[J]. 地球物理学报, 1998, 41(5): 652-657.

    Yang Z Y, Moreau M G. Paleomagnetic study of the Montcornet drilled core[J]. Acta Geophysica Sinica, 1998, 41(5): 652-657(in Chinese with English abstract).
    [21]
    韩非, 秦华峰, 季强, 等. 鲁科一井上白垩统沉积岩岩石磁学和天然剩磁分析: 兼论利用剩磁方向恢复钻孔岩心原始方位的可行性[J]. 地球物理学报, 2017, 60(12): 4730-4740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201712015.htm

    Han F, Qian H F, Ji Q, et al. Rock magnetism and paleomagnetism of Late Cretaceous sedimentary rocks in borehole CCSD-LK-I(Shandong Province) and implications for the feasibility of coreorientation recovery using natural remanent magnetization[J]. Chinese Journal of Geophysics, 2017, 60(12): 4730-4740(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201712015.htm
    [22]
    谢基海, 葛坤朋, 徐慧茹, 等. 古地磁学岩心定向方法回顾[J]. 地球物理学进展, 2020, 35(3): 906-917.

    Xie J H, Ge K P, Xu H R, et al. Review of paleomagnetic core orientation method[J]. Progress in Geophysics, 2020, 35(3): 906-917(in Chinese with English abstract).
    [23]
    Hailwood E A, Ding F. Palaeomagnetic reorientation of cores and the magnetic fabric of hydrocarbon reservoir sands[J]. Geological Society London Special Publications, 1995, 98(1): 245-258.
    [24]
    Tauxe L, Constable C, Johnson C L, et al. Paleomagnetism of the southwestern U.S.A. recorded by 0-5 Ma igneous rocks[J]. Geochemistry Geophysics Geosystems, 2003, 4: 8802.
    [25]
    章凤奇, 宋吉水, 沈忠悦, 等. 松辽盆地北部深层火山岩剩磁特征与裂缝定向研究[J]. 地球物理学报, 2007, 50(4): 1167-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704026.htm

    Zhang F Q, Song J S, Shen Z Y, et al. A study on fracture orientation and characteristic of remnant paleomagnetization of deep-burial volcanic rocks, North of the Songliao Basin[J]. Chinese Journal of Geophysics, 2007, 50(4): 1167-1173(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704026.htm
    [26]
    Parés J M, Schleicher A M, Van D, et al. Paleomagnetic reorientation of San Andreas Fault Observatory at Depth(SAFOD) core[J]. Geophysical Research Letters, 2008, 35(2): 226-236.
    [27]
    朱日祥, 杨振宇, 马醒华, 等. 中国主要地块显生宙古地磁视极移曲线与地块运动[J]. 中国科学: D辑, 1998, 28(增刊1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1000.htm

    Zhu R X, Yang Z Y, Ma X H, et al. Phanerozoic paleomagnetic apparent polar shift curve and block movement of major blocks in China[J]. Science in China: Series D, 1998, 28(S1): 1-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1000.htm
    [28]
    孙丽莎, 黄宝春. 塔里木地块奥陶纪古地磁新结果及其构造意义[J]. 地球物理学报, 2009, 52(7): 1836-1848.

    Sun L S, Huang B C. New paleomagnetic result for Ordovician rocks from the Tarim Block, Northwest China and its tectonic implications[J]. Chinese Journal of Geophysics, 2009, 52(7): 1836-1848(in Chinese with English abstract).
    [29]
    许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27(1): 1-22.

    Xu Z Q, Li S T, Zhang J X, et al. Paleo-Asian and Tethyan tectonic systems with docking the Tarim Block[J]. Acta Petrologica Sinica, 2011, 27(1): 1-22(in Chinese with English abstract).
    [30]
    陈槚俊, 何登发, 孙方源, 等. 塔北隆起晚奥陶世-中泥盆世古隆起格局演变[J]. 石油与天然气地质, 2021, 42(2): 285-298.

    Chen J J, He D F, Sun F Y, et al. Framework evolution of North Tarim paleo-uplift from the Late Ordovician to Middle Devonian[J]. Oil & Gas Geology, 2021, 42(2): 285-298(in Chinese with English abstract).
    [31]
    王素英, 张翔, 田景春, 等. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5): 81-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202105008.htm

    Wang S Y, Zhang X, Tian J C, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5): 81-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202105008.htm
    [32]
    刘军, 龚伟, 黄超, 等. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112

    Liu J, Gong W, Huang C, et al. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No. 5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 1-11(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0112
    [33]
    宁博, 李百强, 吴珍珍, 等. 塔里木盆地中央隆起带寒武系-奥陶系白云岩成岩相及其地球化学特征[J]. 地质科技通报, 2022, 41(4): 46-56. doi: 10.19509/j.cnki.dzkq.2021.0257

    Ning B, Li B Q, Wu Z Z, et al. Diagenetic facies of dolomite and geochemical characteristics across the Cambrian-Ordovician transitions in the Central Uplift Zone, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 46-56(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0257
    [34]
    刘凡瑀, 陈红汉, 唐大卿, 等. 塔里木盆地中-新生界构造单元划分[J]. 地质科技情报, 2012, 31(3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203005.htm

    Liu F Y, Chen H H, Tang D Q, et al. Division of Mesozoic and Cenozoic structural units in Tarim Basin[J]. Geological Science and Technology Information, 2012, 31(3): 24-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203005.htm
    [35]
    陈永权, 周新源, 赵葵东, 等. 塔里木盆地塔中19井奥陶系蓬莱坝组云灰互层段的岩性旋回特征与"顶侵型"埋藏云化模式的建立[J]. 沉积学报, 2009, 27(2): 202-211.

    Chen Y Q, Zhou X Y, Zhao K D, et al. The petrologic rhythm of Lower Ordovician Penglaiba Formation encountered by Well Tazhong 19 and new dolomitization model, Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(2): 202-211(in Chinese with English abstract).
    [36]
    孙乃泉, 云露, 蒲仁海, 等. 塔里木盆地顺9井区柯坪塔格组下段沉积微相与储层展布[J]. 吉林大学学报: 地球科学版, 2013, 43(6): 1716-1725. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306002.htm

    Sun N Q, Yun L, Pu R H, et al. The microfacies and reservoir distribution of the Lower Member of Kepingtage Formation in Shun 9 well area in Tarim Basin[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(6): 1716-1725(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306002.htm
    [37]
    杨风丽, 徐铭辰, 庄圆, 等. 古生代中国中西部三大陆块古地理位置重建与演变[J]. 地学前缘, 2022, 29(6): 265-276. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206018.htm

    Yang F L, Xu M C, Zhuang Y, et al. Paleozoic paleogeographic reconstruction and evolution of the three continental blocks of central and western China[J]. Earth Science Frontiers, 2022, 29(6): 265-276(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206018.htm
    [38]
    Richter C, Acton G, Endris C, et al. Handbook for shipboard paleomagnetists[Z]. [S. l.]: ODP Tech. Note, 2007: 34.
    [39]
    Lowrie W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties[J]. Geophysical Research Letters, 1990, 17(2): 159-162.
    [40]
    裴军令, 孙知明, 李海兵, 等. 青藏高原西北缘晚新生代沉积岩古流向的磁化率各向异性确定及其构造意义[J]. 岩石学报, 2008, 24(7): 1613-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807018.htm

    Pei J L, Sun Z M, Li H B, et al. Paleocurrent direction of the Late Cenozoic sedimentary sequence of the Tibetan Plateau northwestern margin constrained by AMS and its tectonic implications[J]. Acta Petrologica Sinica, 2008, 24(7): 1613-1620(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807018.htm
    [41]
    张志亮, 沈忠悦, 汪新, 等. 库车坳陷克拉苏河新生代沉积岩磁组构特征与古流向分析[J]. 地球物理学报, 2013, 56(2): 567-578.

    Zhang Z L, Shen Z Y, Wang X, et al. Characteristics of magnetic fabrics and paleocurrent directions of Cenozoic sediments in the Kelasu River, Kuqa Depression[J]. Chinese Journal of Geophysics, 2013, 56(2): 567-578(in Chinese with English abstract).
    [42]
    敖红, 邓成龙. 磁性矿物的磁学鉴别方法回顾[J]. 地球物理学进展, 2007, 22(2): 432-442.

    Ao H, Deng C L. Review in the identification of magnetic minerals[J]. Progress in Geophysics, 2007, 22(2): 432-442(in Chinese with English abstract).
    [43]
    刘青松, 邓成龙, 潘永信. 磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义[J]. 第四纪研究, 2007, 27(6): 955-962. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200706011.htm

    Liu Q S, Deng C L, Pan Y X. Temperature-dependency and frequency-dependency of magnetic susceptibility of magnetite and maghemite and their significance for environmental magnetism[J]. Quaternary Sciences, 2007, 27(6): 955-962(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200706011.htm
    [44]
    Deng C L, He H Y, Pan Y X, et al. Chronology of the terrestrial Upper Cretaceous in the Songliao Basin, Northeast Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 44-54.
    [45]
    兰书琪, 卫弼天, 幸龙云, 等. 鄂尔多斯盆地南缘上奥陶统赵老峪组岩石磁学研究[J/OL]. 地质科技通报: 1-12[2023-06-04]. https://doi.org/10.19509/j.cnki.dzkq.tb20220647.

    Lan S Q, Wei B T, Xing L Y, et al. Rock magnetism of the U-pper Ordovician Zhaolaoyu Formation, southern margin of the Ordos Basin[J/OL]. Bulletin of Geological Science and Technology: 1-12[2023-06-04]. https://doi.org/10.19509/j.cnki.dzkq.tb20220647(in Chinese with English abstract).
    [46]
    李波, 石显耀, 李学杰, 等. 西菲律宾海西部沉积物磁学特征及其环境意义[J]. 地质科技情报, 2016, 35(5): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605005.htm

    Li B, Shi X Y, Li X J, et al. Magnetic properties of sediments from the western West Philippine Sea and their environmental implicaitons[J]. Geological Science and Technology Information, 2016, 35(5): 34-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605005.htm
    [47]
    王保锋, 程鑫, 姜南. 等. 羌北地块晚志留世龙木措上组岩石磁学特征[J]. 地质科技通报, 2023, 42(6): 310-318. doi: 10.19509/j.cnki.dzkq.tb20220102

    Wang B F, Chen X, Jiang N, et al. Study on the magnetic proerties of the Late Silurian Longmuco Upper Formation rocks fr-om North Qiangtang Terrane[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 310-318. (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.tb20220102
    [48]
    Fuller M. Magnetic orientation of borehole cores[J]. Geophysics, 1969, 34(5): 772-774.
    [49]
    李学森, 熊国锦. 钻井岩心重定向的古地磁方法及其可靠性[J]. 石油勘探与开发, 2006, 33(5): 581-585.

    Li X S, Xiong G J. Paleomagnetic mehod of reorienting cores and its reliability[J]. Petroleum Exploration & Development, 2006, 33(5): 581-585(in Chinese with English abstract).
    [50]
    Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3): 699-718.
    [51]
    Enkin R J. The direction correction test for paleomagnetism[D]. Paris: Universite de Paris, 1990.
    [52]
    Zijderveld J D A. A C. Demagnetization of rocks: Analysis of results[J]. Developments in Solid Earth Geophysics, 2013, 3: 254-286.
    [53]
    Huang B C, Piper J D A, Sun L S, et al. New paleomagnetic results for Ordovician and Silurian rocks of the Tarim Block, Northwest China and their paleogeographic implications[J]. Tectonophysics, 2019, 755: 91-108.
    [54]
    Butler R. Paleomagnetism: Magnetic domains to geologic terranes[M]. Boston: Blackwell Scientific Publications, 1992.
    [55]
    Fisher R.A. Dispersion on a sphere[J]. Proceedings of the Royal society of London, 1953, 217: 295-305.
    [56]
    Kent J T. The Fisher-Bingham distribution on the sphere[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1982, 44(1): 71-80.
    [57]
    袁学诚. 古地磁学原理及其应用[M]. 北京: 地质出版社, 1991.

    Yuan X C. Principles and applications of paleomagnetism[M]. Beijing: Geological Publishing House, 1991(in Chinese).
    [58]
    谈晓冬, 方大钧, 王朋岩, 等. 塔里木盆地北部中、新生代钻孔岩心古地磁研究: 喜山期岩石重磁化与油气移聚[J]. 地球物理学报, 1995, 38(5): 688-691.

    Tan X D, Fang D J, Wang P Y, et al. Paleomagnetic study of the Mesozoic and Cenozoic bore hole in North Tarim Basin: Himalayian remagnetization and hydrocarbon migration and collection[J]. Acta Geophysica Sinica, 1995, 38(5): 688-691(in Chinese with English abstract).
    [59]
    方大钧, 王朋岩, 沈忠悦, 等. 塔里木地块新生代古地磁结果及显生宙视极移曲线[J]. 中国科学: D辑, 1998, 28(增刊1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1010.htm

    Fang D J, Wang P Y, Shen Z Y, et al. Cenozoic paleomagnetic results of Tarim Block and Phanerozoic apparent polar wander curve[J]. Science in China: Series D, 1998, 28(S1): 90-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1010.htm
    [60]
    方大钧, 沈忠悦, 谈晓冬. 塔里木盆地喜山期岩石重磁化研究[J]. 科学通报, 2002, 47(2): 88-95.

    Fang D J, Shen Z Y, Tan X D. Study on the remagnetization of Himalayan rocks in Tarim Basin[J]. Chinese Science Bulletin, 2002, 47(2): 88-95(in Chinese with English abstract).
    [61]
    李海燕, 张世红. 黄铁矿加热过程中的矿相变化研究: 基于磁化率随温度变化特征分析[J]. 地球物理学报, 2005, 48(6): 1384-1391.

    Li H Y, Zhang S H. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities[J]. Chinese Journal of Geophysics, 2005, 48(6): 1384-1391(in Chinese with English abstract).
    [62]
    Collinson D. Methods in rock magnetism and palaeomagnetism[M]. Netherlands: Springer, 1983.
    [63]
    谈晓冬, 王朋岩, 姜莉萍. 钻孔岩心古地磁研究方法进展[J]. 地球物理学进展, 1994, 9(3): 98-103.

    Tan X D, Wang P Y, Jiang L P. Progress in techniques for bore hole paleomagnetic research[J]. Progress in Geophysics, 1994, 9(3): 98-103(in Chinese with English abstract).
    [64]
    王怿, 戎嘉余, 唐鹏, 等. 中国志留纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 271-285.

    Wang Y, Rong J Y, Tang P, et al. Lithostratigraphic subdivision and correlation of the Silurian in China[J]. Journal of Stratigraphy, 2021, 45(3): 271-285(in Chinese with English abstract).
    [65]
    Li Y P, McWilliams M, Sharps R, et al. A Devonian paleomagnetic pole from red beds of the Tarim Block, China[J]. Journal of Geophysical Research, 1990, 95(B12): 19185-19198.
    [66]
    方大钧, 金国海, 姜莉萍, 等. 塔里木盆地古生代古地磁结果及其构造地质意义[J]. 地球物理学报, 1996, 39(4): 522-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX604.011.htm

    Fang D J, Jin G H, Jiang L P, et al. Paleozoic paleomagnetic results and the tectonic significance of Tarim Plate[J]. Acta Geophysica Sinica, 1996, 39(4): 522-532(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX604.011.htm
    [67]
    贾进华, 张宝民, 朱世海, 等. 塔里木盆地志留纪地层、沉积特征与岩相古地理[J]. 古地理学报, 2006, 8(3): 339-352.

    Jia J H, Zhang B M, Zhu S H, et al. Stratigraphy, sedimentary characteristics and lithofacies palaeogeography of the Silurian in Tarim Basin[J]. Journal of Palaeogeography, 2006, 8(3): 339-352(in Chinese with English abstract).
    [68]
    霍斐斐, 邵瑞琦, 姜南, 等. 柴达木盆地北缘中新生代地层的磁组构特征及其沉积构造学意义[J]. 地球物理学报, 2020, 63(2): 583-596.

    Huo F F, Shao R Q, Jiang N, et al. Anisotropy of magnetic susceptibility of Mesozoic and Cenozoic sediments in the northern margin of Qaidam Basin and its sedimentary-tectonic significance[J]. Chinese Journal of Geophysics, 2020, 63(2): 583-596(in Chinese with English abstract).
    [69]
    邬光辉, 张宝收, 郭春利, 等. 塔里木盆地北部志留系碎屑锆石测年及其地质意义[J]. 大地构造与成矿学, 2009, 33(3): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903016.htm

    Wu G H, Zhang B S, Guo C L, et al. Detrital zircon U-Pb dating for the Silurian in northern Tarim Basin and its significance[J]. Geotectonica et Metallogenia, 2009, 33(3): 418-426(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903016.htm
    [70]
    张乾. 塔东地区志留系碎屑岩沉积环境与沉积相研究[D]. 北京: 中国地质大学(北京), 2014.

    Zhang Q. Study on the Silurian sedimentary environment and facies of clastic rocks in the eastern Tarim Basin[D]. Beijing: China University of Geosciences(Beijing), 2014(in Chinese with English abstract).
    [71]
    刘晓林. 塔里木盆地志留系沉积相与油气分布[D]. 山东青岛: 中国海洋大学, 2009.

    Liu X L. Sedimentary facies and oil-gas distribution characteristics of the Silurian in Tarim Basin[D]. Qingdao Shandong: Ocean University of China, 2009(in Chinese with English abstract).
    [72]
    林畅松, 李思田, 刘景彦, 等. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J]. 岩石学报, 2011, 27(1): 210-218.

    Lin C S, Li S T, Liu J Y, et al. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages[J]. Acta Petrologica Sinica, 2011, 27(1): 210-218(in Chinese with English abstract).
    [73]
    刘景彦, 杨海军, 杨永恒, 等. 塔里木盆地东北缘志留纪构造活动的U-Pb年代证据及盆内响应[J]. 中国科学: 地球科学, 2012, 42(8): 1218-1233.

    Liu J Y, Yang H J, Yang Y H, et al. The U-Pb chronologic evidence and sedimentary responses of Silurian tectonic activities at northeastern margin of Tarim Basin[J]. Science China: Earth Science, 2012, 42(8): 1218-1233(in Chinese with English abstract).
    [74]
    牛露, 于炳松, 张文博. 塔里木盆地北部地区下志留统柯坪塔格组物源分析与物源区母岩年龄确定[J]. 沉积学报, 2013, 31(3): 421-429. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201303005.htm

    Niu L, Yu B S, Zhang W B. Provenance analysis and dating of parent rocks of the sandstones from Kepingtage Formation(Silurian) in the northern Tarim Basin[J]. Acta Sedimentologica Sinica, 2013, 31(3): 421-429(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201303005.htm
    [75]
    李祥权, 丁洪坤, 彭鹏, 等. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据[J]. 地球科学, 2021, 46(8): 2819-2831.

    Li X Q, Ding H K, Peng P, et al. Provenance of Silurian Kepingtage Formation in Tazhong area, Tarim Basin: Evidence from detrital zircon U-Pb geochronology[J]. Earth Science, 2021, 46(8): 2819-2831(in Chinese with English abstract).
    [76]
    曾庆鲁, 王力宝, 王朝锋, 等. 塔中地区志留系柯坪塔格组上3亚段沉积体系类型及分布规律[J]. 中国石油勘探, 2019, 24(1): 95-104.

    Zeng Q L, Wang L B, Wang C F, et al. Sedimentary system types and distribution of the 3rd upper sub-member of Silurian Kepingtag Formation in Tazhong area, Tarim Basin[J]. China Petroleum Exploration, 2019, 24(1): 95-104(in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(324) PDF Downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return